- Synthesize and investigate properties of innovative, functional and competitive thin films (nanolayers) including synthesis and application of graphene;
- Synthesize and investigate properties of innovative, functional and competitive nanomaterials and their application in nanotechnology;
- Synthesize and investigate properties of innovative, functional and competitive quantum dots and nanowires for efficient electroluminescent light sources;
- Synthesize and investigate properties of innovative nanocomposite materials for harvesting of waste energy in high performance thermoelectric generators
No | Activity of the project | Description | Results |
1. | Spectral characterization of AlN and Y2O3 nanopowders pure and doped with metal atoms | Luminescence and excitation spectra of the mentioned materials will be studied in the temperature region of 8 – 300 K. Composite nanopowders and their luminescence and excitation spectra will be studied. | Spectral characterization of AlN and hBN nanopowders (NP) with average grain size ~60 nm has been done, based on studies of photoluminescence (PL) and its excitation (PLE) spectra covering a wide spectral range of UV/visible light at various fixed temperatures within 8 – 300 K. The following main results were obtained. 1. It was found that for both hBN and AlN NP a blue luminescence (BL) is characteristic caused by native defects of material. These luminescent defects can be related to nitrogen vacancy (vN) type formations including so-called F centers, which can be placed within a bulk of the nano-particles as well as on its surface. 2. Mechanisms of the BL in AlN and hBN were revealed consisting of intra-center processes, recombination luminescence and energy transfer from excitons to luminescence centers. 3. It was found that in AlN and hBN powders the BL is sensitive to environmental oxygen and interaction of oxygen with surface defects results in quenching of the BL. Gas sensing properties of the materials such as luminescence response on oxygen concentration and repeatability of the results were studied. The results confirmed that AlN NP and hBN powder are prospective for developing of oxygen gas optical sensors. 4. Luminescence of AlN NP doped with Tb and Mn ions was studied. Impurity caused luminescence at 550 nm and 600 nm, respectively, was observed. Luminescence of composite NP was studied. |
2. | Manufacturing of composite materials from pure and doped AlN and Y2O3 nanomaterials and their spectral characterization. | 1) Formation of AlN and Y2O3 composite materials. 2) Study of luminescence spectra of composite materials above. | AlN based composite materials were prepared consisting of as-grown AlN nanopowder (NP) mixed with doped AlN nanopowders: AlN:Tb and AlN:Mn, which were put into PMMA (polymethylmethacrylate) matrix. All of these ingredients are luminescent. The luminescence spectra of the composite materials were studied at room temperatures (RT) for different concentrations of ingredients. The material which is emitting a visible light with spectral structure close to that of the Sun light or “the white light” was prepared. |
3. | Synthesis of lead free ferroelectrics and investigation of their properties. | Synthesis of Na1/2Bi1/2TiO3 solid solutions, study of electromechanical and thermoelectric properties. | Studies of Na0.5Bi0.5TiO3-CaTiO3 solid solutions at low concentrations of CaTiO3 allow consistently interpreting structure and phasing transitions in unpoled Na0.5Bi0.5TiO3. The inapplicability of Maxwell relations in evaluation of polydomain ferroelectrics is demonstrated. Field induced strain in Na0.5Bi0.5TiO3-SrTiO3- PbTiO3 solid solutions in ferroelectric state is single-valued function of polarisation; reversible component of strain is extracted using Rayleigh relation. In Na0.5Bi0.5TiO3-CdTiO3 solid solutions for first time octahedral rotation system a+b+c+ is found in real crystalline material. |
4. | Investigation of bismuth chalcogenide (BixTey and BixSey) nanostructures | Thermoelectric and topological insulator material (BixTey and BixSey) nanowires and nanoribbons will be synthesized; their structure, electroconductive and thermoelectric properties will be studied for application in spintronics as well as thermoelectric generators. | Catalyst free method physical vapour deposition for fabrication of crystalline BiSe and BiTe nanobelts and thin films developed, topological insulator properties of BiSe nanowires and thermoelectric properties of thin films investigated |
5. | Investigation of compositions of graphene and nanostructured thermoelectric materials | Graphene monolayers and double-layers will be synthesized and combined with synthesized BixTey and BixSey nanowires and nanoribbons. Thermoelectric properties of fabricated compositions will be studied. | Layered graphene/nanostructured Bi2Se3 thin films are synthesized, and their properties are investigated. It is found out that thin films formed by vertically oriented relative to the graphene surface Bi2Se3 nanostructures show better thermoelectric effect. Also, photoconductivity of these thin films under infrared illumination is higher than photoconductivity of thin films formed by laterally oriented relative to the graphene surface Bi2Se3 nanostructures. Thus, such systems are perspective for application in thermoelectric devices and sensors. |
6. | Investigation of Graphene-DNA interaction | Investigation of functionally active DNA attraction to graphene monolayer for the perspective application in biosensors. | To increase graphene sensitivity for sensor applications ZnO/graphene nanolaminates are synthesized, properties of interfaces of ZnO/graphene are investigated. It is shown that in contrast with, for example, Al2O3/ZnO nanolaminates, graphene promotes formation of crystalline ZnO thin films. In such nanolaminates, graphene becomes negatively charged. It is shown that with increase of number of graphene layers. In nanolaminates, their photoluminescence decreases. These structures investigated for their perspective applications in sensors. Large areas of graphene doped in Sb2S3 vapour atmosphere. Local doping of graphene was proceeded by using of Sb2S3 nanowire as doping source. Transistor characteristics of these structured investigated. Addressed graphene transfer method developed where Ge nanowire is us used for detachment of graphene from the graphite surface, determination of graphene flake mass and number of layers and for transfer to determined position on the surface. |
7. | Graphene doping with V-VII group elements for fabrication of semiconductor devices | Both large surface area doping and doping at the local scale by V-VII group chemical elements will be carried out; properties of doped graphene will be studied for the application in nanodevices. | Large areas of graphene doped in Sb2S3 vapour atmosphere. Local doping of graphene was proceeded by using of Sb2S3 nanowire as doping source. Transistor characteristics of these structured investigated. Addressed graphene transfer method developed where Ge nanowire is us used for detachment of graphene from the graphite surface, determination of graphene flake mass and number of layers and for transfer to determined position on the surface. |
8. | Nanowire and nanoparticle synthesis for the application in sensors | Semiconductor nanowires and metal nanoparticle arrays will be fabricated; their properties will be investigated for the use in optical, gas sensors and for the energy conversion | Photoconductivity of both individual and encapsulated inside anodized alumina template bismuth sulphide nanowire arrays are investigated as function of irradiating photons energy. It is shown that the photoconductivity excitation energy differs for the nanowire’s surface, near-surface layer and the volume of the nanowire, allowing determining dominating type of charge carriers in these areas of the nanowire. Method for fabrication of Omic contacts developed. Interaction with water molecules in relative humidity level 5-80 % determined, resistive switching in nanowires explained by water adsorption on the surface of nanowires. |
9. | Organization of Eironanoforum 2015 | In cooperation with all NRP performers and EU Program Horizon 2020 Euronanoforum 2015 with 1000-1500 participants will be organized in 2015. Nanotechnology promotion activities and an exhibition on nanotechnology achievements in Latvia will be organized in the frames of Euronanoforum 2015. | In cooperation with all NRP performers and EU Program Horizon 2020 Latvian presidency in EU Council event international Conference “Euronanoforum 2015”with 1100 participants organized in 2015. Nanotechnology promotion activities (lectures, demonstrations) in schools of Latvia organized. An exhibition on nanotechnology achievements wordwide including Latvia organized in the frames of Euronanoforum 2015. Free access to exhibition for public provided. |
10. | Preparation of oxide nanocomposites | Optimal technologies for producing multicomponent oxide based composites with definite parameters will be developed | The liquid (sol-gel combustion, microwave assisted) and gas phase (thermal plasma) preparation methods of mullite-ZrO2-Al2O3, ZrO2-CeO2 nanoparticles were developed and their parameters, sinterability was compared. The prepared nanoparticles had crystallite size in the range 0f 3.2-9.4 nm in dependence on used mehod. The nanoparticles were appplied for producing high temperature materials. ZnO photocatalysts doped with iron group metals and Ag with improved photocatalytic activity were prepared by using sol-gel and hydrothermal microwave assisted methods. The highest photocatalytic activity for degradation methylene blue (MB) solution showed ZnO doped with Ni (0.2 mol%) and Ag (1.0 mol%). TiO2 nanofibers doped with Pt, Pd or Au with dopant content 0.5-1.0 wt.% had enhanced photocatalytic activity for degradation MB solution and glycerol oxidation. |
11. | Sintering technology of multicomponent oxides | On the basis of sinterability studies of oxide composites the optimal technology will be selected | The prepared mullite-ZrO2 Al2O3, ZrO2-CeO2 nanoparticles were densified by using spark plasma sintering (SPS). The fine-grained (0.44-1.10 µm) materials with definite phase composition and density of 95.8-97.2% were obtained. The low crystallite size of the ZrO2-CeO2 nanoparticles improved their sinterability and allows manufacture dense materials at low temperature (1280-1310 oC) during 3 min and therefore inhibits reduction of CeO2 by graphite and degradation parameters of ZrO2-CeO2. It was estimated that Al2O3 and Cr2O2 dopants in mullite-Zro2 system prevented growth of bar-like mullite grains and therefore improved mechanical parameters, hardness of materials. |
12. | Research on spectroscopic properties of complex oxides | Synthesis and spectroscopic research of rare-earth ions doped complex oxides: nnopowders, films and ceramics | The combustion synthesis method that utilize polyethylene glycol as a chelating agent and as a fuel can be use for preparation of nanoparticles of rare earth hafnate fluorites A2Hf2O7 (A ¼ Y, Gd, Lu). Nanoparticles of different sizes from 6 nm to 300 nm are obtained by varying annealing temperature from 800 oC to 1400 oC. Europium(III) emission has the highest quantum efficiency in nanoparticles prepared at 800 oC with 1 to 2 at.% doping concentration. The luminescence spectra for SrAl2O4:Eu,Dy excited at 290-90K indicate that the luminescence center and its surrounding are the same. The absence of glow maxima within 70–170K in thermally stimulated luminescence is strong evidence that both – electrons and holes are localized in traps and therefore tunneling process is responsible for the creation of excited Eu2+ luminescence centers. |
13. | Synthesis of light sensitive and high surface area nanostructures | Spray pyrolysis and electrochemical methods for synthesis of oxide nanostructures (for example, TiO2, WO3 etc.) will be developed. Synthesis technology for high surface area carbon nanostructures will be studied. | Different photo-catalytically active TiO2 nanostructures have been synthesized, modified and researched, and an advanced method for their synthesis using anodizing process has been improved, which allows to modify the appearance and properties of nanotubes. The technology for the acquisition of large surface carbon (graphene) nanomaterials from industrial waste has been elaborated, studies of adsorption properties of different gases have been carried out in cooperation with the Latvian company Keramserviss Ltd. A prototype has been created to test the hydrogen sorption ability of large surface carbon nanostructures |
14. | Synthesis of graphene and modified graphene | Graphene samples are planned to be obtained by dissolution/ precipitation mechanism of carbon on catalyst and to get the composites with the best sorption abilities. | A cheap, simple and effective method is proposed for the large quantity production of the sheets of graphenic carbon materials (GCM) by annealing the mixture of nickel powder with a suitable carbon amount at the temperatures close to 1000ºC. The number of graphene layers in the sheets of GCM can be changed by varying the amount of carbon in the mixture and other parameters of mixture annealing regime and drying regime of ended products. The appearance of GCM on the surface of Ni particles was identified using a scanning electron microscope (SEM) at a low accelerating voltage of 5 kV. The thickness and properties of the layers were investigated by electron microscopy, and X-ray diffraction. The fabrication processes were carried out at the concentrations of added carbon from 0 to 1 at%. The results obtained are fully consistent with the well-known solid phase reactions of carbon dissolution in Ni at 1000°C and graphene or graphite precipitation on the surface with cooling down to the room temperatures. |
15. | Research on properties of graphene and graphene composites with focus on improvement of sorption properties | By synthesis of graphene and modified graphene with different composition and investigation of its properties and sorption ability an innovative material with structure, composition and morphology required for excellent sorption efficiency. | Adsorption by graphene sponge (GS) manufactured by annealing nickel-carbon powders mixture in inert atmosphere was studied. In determining the specific surface area (SSA) for the GS sample were found that Brunauer, Emmett, Teller method (BET) of approximation of experimental isotherms in pressure ranges 0.025-0.12 give wrong results, because adsorption in these pressure region is affected with walls of ampoule. Real SSA value was found by subtracting pore effect method (SPE) or by BET approximation in low range of relative pressure 0.0004-0.002. |
16. | Modelling of materials | Large scale computer modeling of new materials for fuel cells will be performed | Thermodynamic properties of neutral and charged oxygen vacancies in several ABO3 perovskites were performed based on first principles phonon calculations. Vacancy segregation effects towards surfaces carefully analyzed. Special attention was paid to 100, 110, 111 surface properties. New advanced materials were predicted. A novel quantum field approach to photoexcited insulators was developed. |
17. | Modelling of materials | Computer-designed materials for permeation membranes for CO2 capture will be studied | New advanced membranes were suggested based on (La,Sr)FeO3 perovskite solid solutions. First principles modelling of membrane interaction with CO2 in gas phase was performed. Several configurations of CO2 molecule adsorption with and without carbonate formation were predicted theoretically and checked experimentally. |
18. | Modelling of materials | Construction and simulations of nanocarbon-based nanosensor systems will be performed | Unexpected epitaxial growth of a few WS2 layers on {11̅00} facets of ZnO nanowires were predicted from first principles. Carbon doped TiO2 was studied. Nanocarbon atomic and electronic structure was calculated. Site symmetry approach was developed for the supercell model of carbon-doped ZnO nanowires. |
19. | Modelling of materials | Computer simulations on properties of inorganic nanotubes, nanowires and nanoclusters will be performed | C,-N‑, S‑, and Fe-doped TiO2 and SrTiO3 nanotubes for visible-light-driven photocatalytic water splitting were predicted from first principles. Energetic stability and photocatalytic activity of SrTiO3 nanowires and doped TiO2 anatase (101) nanotubes were carefully analysed. |
20. | Investigation of metal-insulator transition in thin films transition. | In this project synthesis and research of thin films with metal-insulator transition is planned. The materials could be used in optical memory, optical lithography, smart mirrors and sensors applications. | A DC magnetron sputtering technology for production of copper nitride (Cu3N) thin films was developed, and their use in optical lithography was demonstrated. Metal-insulator transition in Cu3N can be induced by temperature or pressure. In-situ X-ray absorption spectroscopy studies of polycrystalline Cu3N were performed as a function of temperature (T=0-300 K) and pressure (P=0-27 GPa), using synchrotron radiation at DESY and SOLEIL centres. The anisotropy of copper atoms vibrations and strong correlation in the motion of atoms along -N-Cu-N- atomic chains was found. The reversible phase transition to metallic state in Cu3N was observed above P=5 GPa and its origin was explained. |
21. | Vacuum coating development | Technology of TiO2, TiN, ZrO2, ZnO, SiO2 layers formation on fiber materials will be elaborated | ZnO, TiO2 and ZrO2 coatings on glass fiber fabric were obtained by magnetron sputtering method. Obtained thin films contained crystalline ZnO or TiO2 anatase. Optical and scanning electron microscopy studies showed that the resulting films were homogeneous with a smooth surface. However some oxide coatings exhibited poor mechanical adhesion on the surface of the glass fiber fabric, which led to the additional surface study of fiber glass fabrics. |
22. | Electrophoresis equipment prototype | Technology of TiO2 and CNT/graphene coating formation will be elaborated. | Enhanced electrophoretic equipment was complemented by a circulation pump and an ultrasound bath. Fe-TiO2 and TiO2-WO3 films photoactive in the visible light range were obtained by electrophoretic deposition (EPD) method. TiO2-WO3 films have been shown to act as an effective photocatalyst for the decomposition of organic matter. Electrophoretically-derived reduced graphene oxide (rGO) and CNT films have been studied as anodic material for lithium-ion batteries. |
23. | Iron phosphate nano-layer coatings development | Coatings for lithium-ion batteries and application in battery layout and testing will be performed | An electrophoretic deposition (EPD) method yields nano-layer coatings of lithium iron phosphate (LiFePO4) on a steel substrate as a feedstock using LiFePO4 powder, carbon black and a PVDF binder in an NMP solvent. It has been shown that for a successful obtaining of the LiFePO4 film, it is necessary to add a surfactant (Triton X-100) to the initial dispersion. Experimentally determined optimal parameters of EPD process to obtain films with the highest specific capacity (~ 100 mAh/g): TX-100 concentration 1.6%, lead time 15 min and electric field intensity 100 V/cm. |
24. | Multilayer graphene-based composite materials and monolayers development | Thin and thick layers of graphene for applications in the ion energy storage devices will be performed | Composite thin films TiO2/rGO, Fe2O3/rGO and TiO2/FeO3/rGO obtained by electrophoretic deposition were studied as anode material for LIBs (rGO – reduced graphene oxide). The results revealed that α-Fe2O3/TiO2/rGO exhibited a high specific discharge capacity and cyclability. Obtained discharge capacity 790 mAh/g was after 150 cycles at the current density 100 mA/g. The improved electrochemical properties were due to the rGO uniform dispersion in the inter-space of α-Fe2O3 and TiO2 as well as synergic effect between metal oxides and rGO. |
25. | Research on formation mechanisms of nanostructures | Research of nanostructure formation in model materials (LiF and MgO crystals) under irradiation with swift ions | The evolution of dislocation structure and modification of micro-mechanical and optical properties of radiation –sensitive (LiF) and radiation - resistant (MgO) ionic crystals irradiated with high doses of heavy and light ions has been studied The results show. that severe irradiation of LiF crystals with light ions (N, C and He) creates strong structural damage and causes hardening approaching that reached by irradiation with high-energy heavy ions (U, Bi, Au,etc.). The peculiarity is the manifestation of the 3He- and 4He-induced effects of damage and hardening also beyond the calculated ion range. The irradiation with secondary products of nuclear reactions of ions with target nuclei and channelling of ions are considered as likely reasons for the beyond-the-range damage. The depth profiles of damage confirm a joint |
26. | Laser technology elaboration for ZnO electrical conductivity control | Laser technology for control and increase of ZnO electrical conductivity will be developed | Laser technology for control and increase of ZnO electrical conductivity has been developed. It was found that the interaction of laser radiation with Zn crystal is characterized by two threshold intensities: the first threshold intensity Ith1 = 3.5 MW/cm2, at which conductivity starts to increase monotonously up to 103 times, till the second threshold intensity Ith2= 290.0 MW/cm2, due to the increase of the Zn interstitials (Zni) concentration at the surface of the ZnO sample. Second stage of the process is “black ZnO” appearance at the irradiated surface. This phenomenon is caused by the agglomeration of Zni in nanoparticles the diameter of which increases with the number of laser pulses. The possibility of formation of metallic Zn nanoparticles with a certain size and density on a ZnO crystal by laser radiation was studied. By increasing the number of laser radiation pulses (dose), nanoparticles were obtained, whose dimensions are directly proportional to the number of pulses. The dependence of the growth of nanoparticle density on the number of pulses was observed. |
27. | Synthesis of fluoride nanocrystals containing oxyfluoride glass ceramics | Synthesis of oxyfluoride glass and glass ceramics for perspective light source applications will be performed | New oxyfluoride materials containing CaF2, SrF2 and NaLaF4 nanocrystals heve been synthesized. They are oxyfluoride glass and glass ceramics activated by rare-earth ions, and are prospective as phosphor materials for white LED’s. With Dy3+/Eu3+ ions double-activated glass and glass-ceramics have been investigated, which contain CaF2 or SrF2 nanocrystallites. An energy transfer from dysprosium ions (Dy3+) to europium ions (Eu3+) has been observed, with an efficiency of 6-68%, by rising of the concentration of the rare-earth ions in the sample. In the glass-ceramics samples with SrF2 nanocrystallites, the energy transfer efficiency is higher as in the glass samples. It could be explained by an embedding of the rare-earth ions in the nanocrystallites. The effective energy transfer from dysprosium to europium ions allow to intensify the luminescence of the europium ions inthe red spectral region, thus improving the spectral shape of the Dy3+/Eu3+ double-activated samples looking from the application prospective in the white LED’s. |
28. | Synthesis of cadmium oxide containing composite materials | Synthesis of cadmium oxide containing composite materials for perspective light source applications | New cadmium oxide containing composite materials - ZnO-CdO thin films have been synthesized by an extraction-pyrolythic method. Their structure and luminescence properties have been characterized. It is shown that the extraction-pyrolythic method allows to obtain several new oxide nanocomposite materials. The synthesized ZnO-CdO thin films consist of nanocrystals with size of several tens of nanometers. |
29. | Development and characterization of new inorganic nanocomposite with improved thermoelectric properties | Sol-gel synthesis of metal oxides based nanocomposite materials, sintering under different conditions, improvement of materials chemical composition and sintering conditons in order to optimize thermoelectric properties will be performed | Thermoelectric properties of spark plasma sintered and subsequently air-annealed Sn1-xSbxO2 (x ¼ 0, 0.01, 0.03, 0.05) ceramic samples were characterized. The highest thermo-electric figure of merit of ZT = 0.06 at 1073 K was exhibited by the sample of composition Sn0.99Sb0.01O2. |
30. | Development and characterization of new organic matrix/ nanoparticle composites with improved thermoelectric properties | As organic matrixes already known conducting polymers (PEDOT:PSS, PTH, PANI), as well as novel (for application in TE material) type of matrix – conducting molecular glasses will be used. As the nanoparticles wide range of materials will be used – carbon allotropes (nanotubes, grapheme, etc), inorganic semiconductor, conducting oxide and metal nanoparticles. Solution processing as well as melt mixing technologies are planned to use for production of nanocomposites | Proposed 8 derivatives of 2 and 2,8-substituted tetrathiotetracene (TTT) was synthesized. Their thermoelectric properties was evaluated and compared with patent TTT |
31. | Development and characterization of nanostructured polymer semiconductor (n- and p-type) materials with improved thermoelectric properties | By means of electrospinning it is planned to obtain axially oriented polymer semiconductor nanowire mats and assess them for future usage in thermoelectric devices | Thin films of p- and n- type organic semiconductors for thermo-electrical (TE) applications are produced by doping of tetrathiotetracene. A proof of concept prototype of planar thin film TE generator based on a single p-n couple from the organic materials is built and its power generation characterized. |
32. | Development of thin film thermoelectric characterization methods | Planned to prepare setups and to develop measurement methodology for Zeebeck coefficient and thermal conductivity determination in thin film samples | For determination of Zeebeck coefficient and thermal conductivity of thin films experimental methods has been developed and corresponding setups constructed. Both methods are implemented at ISSP UL. |
33. | Synthesis of oxyfluoride glass and glass ceramics for up-conversion luminescence applications and optical properties investigation | Oxyfluoride glass and glass ceramics samples of different compositions will be synthesized and their up-conversion luminescence properties will be investigated with the aim to obtain efficient infrared radiation transformers for sensor and light source applications | New erbium doped oxyfluoride glass ceramics materials have been synthesized. Influence of composition, synthesis and annealing procedure have been studied. |
34. | Synthesis and research of hybrid nanostructures for efficient electroluminescent device applications | Different synthesis and treatment procedures will be investigated with the aim to obtain efficient electroluminescent material | In this study, we fabricated two-terminal PbS, In2S3, CdS and ZnSe single-nanowire photoresistor devices and tested applicability of these materials under the same conditions for colour-sensitive (405 nm, 532 nm and 660 nm) light detection. Nanowires were grown via atmospheric pressure chemical vapour transport method. Single-nanowire photoresistors were fabricated via in situ nanomanipulations inside SEM, using focused ion beam (FIB) cutting and electron-beam-assisted platinum welding. Their current-voltage characteristics and photoresponse values were measured. Applicability of the tested nanowire materials for colour-sensitive light detection is discussed. |
35. | Synthesis and characterization of novel core-shell nanowires. | 1D/1D heterostructures of ZnO/WS2 core/shell nanowires with a-fewlayers-thick WS2 shell were fabricated in order to improve the optoelectronic properties of pure ZnO nanowires. Aa single-nanowire photoresistive device was assembled by mechanically positioning ZnO/WS2 core/shell nanowires onto gold electrodes inside a scanning electron microscope. The results show that a few layers of WS2 significantly enhance the photosensitivity in the short wavelength range and drastically (almost 2 orders of magnitude) improve the photoresponse time of pure ZnO nanowires. The fast response time of ZnO/WS2 core/shell nanowire was explained by electrons and holes sinking from ZnO nanowire into WS2 shell, which serves as a charge carrier channel in the ZnO/WS2 heterostructure. | |
36. | Study of mechanical and optoelectronic properties of core-shell nanowires. | In this study, we have investigated electron-beam-induced reversible elastic-to-plastic transition in Ag/Al2O3 and Au/Al2O3 NWs prepared by the coating of Ag andAuNWs with Al2O3 by low-temperature atomic layer deposition. The observed phenomenon enabled freezing the bent core–shell NW at any arbitrary curvature below the yield strength of the materials and later restoring its initially straight profile by irradiating the NW with electrons. In addition, it was demonstrated that the coating efficiently protects the core material from fracture and plastic yield, allowing it to withstand significantly higher deformations and stresses in comparison to uncoated NW. |
PUBLISHED SCIENTIFIC PAPERS:
In journals with SNIP > 1
R1. Š.Svirskas, M.Dunce, E.Birks, A.Sternberg, J.Banys Electromechanical properties of Na0.5Bi0.5TiO3-SrTiO3-PbTiO3 solid solutions J.Phys.Chem.Sol. vol.114, p. 94-99, 2018, doi.org/10.1016/j.jpcs.2017.11.007
R2. E.Birks, M.Dunce, J.Peräntie, J.Hagberg, A.Sternberg. Direct and indirect determination of electrocaloric effect in Na0.5Bi0.5TiO3. J.Appl.Phys.vol.121, p.224102, 2017, doi.org/10.1063/1.4985067
R3. R.Ignatans, M.Dunce, E.Birks, A.Sternberg. Novel octahedral tilt system a+b+c+ in (1-x) Na0.5Bi0.5TiO3-xCdTiO3 solid solutions. J.Mater.Sci. 52, 7149-7157, 2017, DOI 10.1007/s10853-017-0950-8
R4. Birks E., Dunce M., Ignatans R., Kuzmin A., Plaude A., Antonova M., Kundzins K., Sternberg A. Structure and dielectric properties of Na0.5Bi0.5TiO3-CaTiO3 solid solutions. Journal of Applied Physics, vol.119, pp.0741102 (7), 2016, doi.org/10.1063/1.4942221
R5. Dimza V., Popov A.I., Lace L., Kundzins M., Kundzins K., Antonova M., Livins M. Effects of Mn doping on dielectric properties of ferroelectric relaxor PLZT ceramics. Current Appl.Phys., vol.17, pp.169-173, 2016, doi.org/10.1016/j.cap.2016.11.010
R6. J. Andzane, G. Kunakova, S. Charpentier, V. Hrkac, L. Kienle, M. Baitimirova, T. Bauch, F. Lombardi, and D. Erts. Catalyst-free vapour-solid technique for deposition of Bi2Te3 and Bi2Se3 nanowires/nanobelts with topological insulator properties, Nanoscale, 7, 15935 – 15944 (2015), DOI: 10.1039/C5NR04574F
R7. M. Baitimirova, J. Andzane, G. Petersons, R. Meija, M. Romanova, R. Poplausks and D. Erts. Vapor-solid synthesis of non-planar bismuth selenide nanoplates on graphene substrate. J. Mater. Sci. 51 (17) 8224-32 (2016) DOI: 10.1007/s10853-016-0097-z
R8. M. Baitimirova, R. Viter, J. Andzane A. van der Lee, D. Voiry, I. Iatsunskyi, E. Coy, L. Mikoliunaite, S. Tumenas, K. Załęski, Z. Balevicius, I. Baleviciute, A. Ramanaviciene, A. Ramanavicius, S. Jurga, D. Erts, Mikhael Bechelany. Tuning of Structural and Optical Properties of Graphene/ZnO Nanolaminates, J. Phys. Chem. C, 120(41) 23716-23725 (2016)
R9. I. Iatsunskyi, M. Baitimirova, E. Coy, L. Yate, R. Viter, A. Ramanavicius, S. Jurga, M. Bechelany, D. Erts. Influence of ZnO/Graphene nanolaminate periodicity on their structural and mechanical properties, Journal of Materials Science & Technology, in press
R10. J. Andzane, G. Kunakova, J.Varghese, J.D. Holmes, D. Erts. Photoconductive properties of Bi2S3 nanowire arrays grown in porous alumina template. Journal of Applied Physics, 117(6), 064305 (2015).
R11. U. Malinovskis, A. Berzins, F.H. Gahbauer, R. Ferber, G. Kitenbergs, I. Muiznieks, D. Erts, J. Prikulis. Colloidal nanoparticle sorting and ordering on anodic alumina patterned surfaces using templated capillary force assembly. Surface & Coatings Technology, 326, 264-269 (2017).
R12. R. Poplausks,_J. Prikulis, D. Jevdokimovs, U. Malinovskis, and D. Erts Production of rainbow-like variable thickness anodic alumina spacer for optimization of plasmonic scattering by nanoholes on mirror, ACS Omega, in press
R13. T.S. Bjørheim, M. Arrigoni, D. Gryaznov, E.A. Kotomin, and J. Maier, Thermodynamic properties of neutral and charged oxygen vacancies in BaZrO3 based on first principles phonon calculations. - Phys. Chem. Chem. Phys., 2015, 17, p. 20765-20774.
R14. R.I. Eglitis and A.I. Popov. Systematic trends in (001) surface ab initio calculations of ABO3 perovskites. J. Saudi Chem. Soc., 2018, 22, pp. 459-468. DOI: 10.1016/j.jscs.2017.05.011
R15. Y. Mastrikov, R. Merkle, E. A. Kotomin, M. Kukla and J. Maier . Surface termination effects on oxygen reduction reaction rate at fuel cell cathodes. J. Mater. Chem. A, 2018, DOI: 10.1039/C8TA02058B.
R16. V.M. Lisitsyn, L.A. Lisitsyna, A.I. Popov, E.A. Kotomin, F.U. Abuova, A. Akilbekov, and J. Maier, Stabilization of primary mobile radiation defects in MgF2 crystals. - Nucl. Instr. Meth. Phys. Res. B, 2016, 374, p. 24–28.
R17. Yu.F. Zhukovskii, A. Platonenko, S. Piskunov, and E.A. Kotomin, Ab initio simulations on migration paths of interstitial oxygen in corundum. - Nucl. Instr. Meth. Phys. Res. B, 2016, 374, p. 29–34.
R18. A.I. Popov, E.A. Kotomin, and J. Maier. Analysis of self-trapped hole mobility in alkali halides and metal halides. Solid State Ionics, 2017, 302, p. 3–6. DOI: 10.1016/j.ssi.2016.12.004
R19. O. Lisovski, A. Chesnokov, S. Piskunov, D. Bocharov, Yu.F. Zhukovskii, M. Wessel, and E. Spohr, Ab initio calculations of doped TiO2 anatase (101) nanotubes for photocatalytical water splitting applications. – Mater. Sci. Semicond. Process. 2016, 42, p. 138-141.
R20. S. Piskunov, O. Lisovski, J. Begens, D. Bocharov, Yu.F. Zhukovskii, M. Wessel, and E. Spohr, C‑, N‑, S‑, and Fe-doped TiO2 and SrTiO3 nanotubes for visible-light-driven photocatalytic water splitting: Prediction from first principles. - J. Phys. Chem. C, 2015, 119, p. 18686−18696.
R21. B. Polyakov, A. Kuzmin, K. Smits, J. Zideluns, E. Butanovs, J. Butikova, S. Vlassov, S. Piskunov, and Yu.F. Zhukovskii, Unexpected epitaxial growth of a few WS2 layers on {11̅00} facets of ZnO nanowires. - J. Phys. Chem. C, 2016, 120, p. 21451−21459.
R22. V. Dimza, A.I. Popov, L. Lāce, M. Kundzins, K. Kundzins, M. Antonova, and M. Livins. Effects of Mn doping on dielectric properties of ferroelectric relaxor PLZT ceramics. Current Appl. Phys., 2017, 17, p. 169-173. DOI: 10.1016/j.cap.2016.11.010.
R23. D. Bocharov, S. Piskunov, Yu.F. Zhukovskii, E. Spohr, and P.N. D'yachkov. First principles modeling of 3d-metal doped three-layer fluorite-structured TiO2 (4,4) nanotube to be used for photocatalytic hydrogen production. Vacuum, 2017, 146, p. 562-569. DOI: 10.1016/j.vacuum.2017.05.002
R24. J. Timoshenko, A. Anspoks, A. Kalinko, A. Kuzmin, Thermal disorder and correlation effects in anti-perovskite-type copper nitride, Acta Mater. 129 (2017) 61-71. DOI: 10.1016/j.actamat.2017.02.074
R25. K. Kukli, E.Salmi, T. Jõgiaas, R. Zabels, M. Schuisky, J. Westlinder, K. Mizohata, M. Ritala, M. Leskelä. Atomic layer deposition of aluminum oxide on modified steel substrates. Surface & Coatings Technology, 304(2016) 1-8. doi.org/10.1016/j.surfcoat.2016.06.064
R26 A. Dauletbekova, V. Skuratov, N. Kirilkin, I. Manika, J. Maniks, R. Zabels, A. Akilbekov, A. Volkov, M. Baizhumanov, M. Zdorovets, A. Seitbayev. Depth profiles of aggregate centers and nanodefects in LiF crystals irradiated with 34 MeV 84Kr, 56 MeV 40Ar and 12 MeV 12C ions. Surface & Coatings Technology (in press, doi.org/10.1016/j.surfcoat.2018.03.096).
R27. R. Grants I.Manika, R.Zabels, J.Maniks, K.Schwartz, T.Krasta, A.Kuzmins. Formation of dislocations in LiF irradiated with 3He and 4He ions. Journal of Nuclear Materials 507 (2018) 241-247. doi.org/10.1016/j.jnucmat.2018.05.005
R28. A. Voznyi, V. Kosyak, L. Grase, J. Vecstaudža, P. Onufrijevs, Yu. Yeromenko, A. Medvid’, A. Opanasyuk, Formation of SnS phase obtained by thermal vacuum annealing of SnS2 thin films and its application in solar cells, Materials Science in Semiconductor Processing 79 (2018) 32–39
R29. Y.V. Znamenshchykov, V.V. Kosyak, A.S. Opanasyuk, E. Dauksta, A.A. Ponomarov, A.V. Romanenko, A.S. Stanislavov, A. Medvids, I.O. Shpetnyi, Yu.I. Gorobets, The surface morphology, structural properties and chemical composition of Cd1−xZnxTe polycrystalline thick films deposited by close spaced vacuum Sublimation, Materials Science in Semiconductor Processing 63 (2017) 64–71.
R30. P.Onufrijevs, P. Scajev, K. Jarasiunas, A. Medvid, V. Korsaks, N. Mironova-Ulmane, M. Zubkins, and H. Mimura, “Photo-electrical and transport properties of hydrothermal ZnO”, J. Applied Physics, vol. 119, 135705 (2016).
R31. E. Elsts, G. Krieke, U. Rogulis, K. Smits, A. Zolotarjovs, J. Jansons, A. Sarakovskis, K. Kundzins, Rare earth doped glass-ceramics containing NaLaF4 nanocrystals, Optical Materials 2016, vol. 59, p. 130-135, DOI: 10.1016/j.optmat.2016.01.005;
R32. M. Kemere, J. Sperga, U. Rogulis, G. Krieke, J. Grube, Luminescence properties of Eu, RE3+ (RE=Dy, Sm, Tb) co-doped oxyfluoride glasses and glass-ceramics, J. of Luminescence, 2017, vol.181, pp. 25-30, DOI: 10.1016/j.jlumin.2016.08.062;
R33. M.Kemere, U.Rogulis, J.Sperga, Studies of luminescence and energy transfer in Dy3+/Eu3+ co-doped oxyfluoride glasses and glass ceramics, J. of Alloys and Compounds, 2018, vol. 735, pp. 1253-1261; DOI: 10.1016/j.jallcom.2017.11.077;
R34. Rubenis, K., Populoh, S., Thiel, P., Yoon, S., Müller, U., Locs, J., Thermoelectric properties of dense Sb-doped SnO2ceramics (2017) Journal of Alloys and Compounds, 692, pp. 515-521. DOI: 10.1016/j.jallcom.2016.09.062
R35. Rubenis, K., Locs, J., Mironova, J., Merijs-Meri, R. Influence of phase separation on thermal conductivity of Ti1-xSnxO2 ceramics (2016) Journal of Ceramic Science and Technology, 7 (1), pp. 135-138. DOI: 10.4416/JCST2015-00061
R36. S. Woodward, M. R. Garrett, M. J. Durán-Peña, W. Lewis, K. Pudzs, J. Uzulis, I. Mihailovs, B. Tyril, J. Shine, M. Rutkis and E. F. Smith, Synthesis and thermoelectric properties of 2- and 2,8-substituted tetrathiotetracenes, J. Mater. Chem. C, 2018,6, 3403-3409 DOI: 10.1039/C8TC00073E
R37. Pudzs, K., Vembris, A., Rutkis, M., Woodward, S. Thin Film Organic Thermoelectric Generator Based on Tetrathiotetracene (2017) Advanced Electronic Materials, 3 (2), art. no. 1600429. DOI: 10.1002/aelm.201600429
R38. Krieke, G., Sarakovskis, A., Springis, M. Cubic and rhombohedral Ba4Lu3F17:Er3+ in transparent glass ceramics: Crystallization and upconversion luminescence (2018) Journal of Luminescence, 200, pp. 265-273. DOI: 10.1016/j.jlumin.2018.04.016
R39. Krieke, G., Sarakovskis, A., Springis, M. Upconversion luminescence of Er3 +/Yb3 +and their role in the stabilization of cubic NaLaF4 nanocrystals in transparent oxyfluoride glass ceramics (2018) Journal of Non-Crystalline Solids, 481, pp. 335-343. DOI: 10.1016/j.jnoncrysol.2017.11.016
R40. Krieke, G., Sarakovskis, A., Springis, M. Ordering of fluorite-type phases in erbium-doped oxyfluoride glass ceramics (2018) Journal of the European Ceramic Society, 38 (1), pp. 235-243. DOI: 10.1016/j.jeurceramsoc.2017.08.037
R41. Krieke, G., Sarakovskis, A., Ignatans, R., Gabrusenoks, J. Phase transitions and upconversion luminescence in oxyfluoride glass ceramics containing Ba4Gd3F17 nanocrystals (2017) Journal of the European Ceramic Society, 37 (4), pp. 1713-1722. DOI: 10.1016/j.jeurceramsoc.2016.12.023
R42. Krieke, G., Sarakovskis, A., Springis, M. Upconversion luminescence of a transparent glass ceramics with hexagonal Na(Gd,Lu)F4 nanocrystals (2017) Journal of Alloys and Compounds, 694, pp. 952-958. DOI: 10.1016/j.jallcom.2016.10.156
R43. Krieke, G., Sarakovskis, A. Crystallization and upconversion luminescence of distorted fluorite nanocrystals in Ba2+ containing oxyfluoride glass ceramics (2016) Journal of the European Ceramic Society, 36 (7), pp. 1715-1722. DOI: 10.1016/j.jeurceramsoc.2016.01.025
R44. Sarakovskis, A., Krieke, G. Upconversion luminescence in erbium doped transparent oxyfluoride glass ceramics containing hexagonal NaYF4 nanocrystals (2015) Journal of the European Ceramic Society, 35 (13), pp. 3665-3671. DOI: 10.1016/j.jeurceramsoc.2015.06.014
R45. Sarakovskis, A., Krieke, G., Doke, G., Grube, J., Grinberga, L., Springis, M. Comprehensive study on different crystal field environments in highly efficient NaLaF4:Er3+ upconversion phosphor (2015) Optical Materials, 39, pp. 90-96. DOI: 10.1016/j.optmat.2014.11.004
R46. Tuomela, A., Pankratov, V., Sarakovskis, A., Doke, G., Grinberga, L., Vielhauer, S., Huttula, M. Oxygen influence on luminescence properties of rare-earth doped NaLaF4 (2016) Journal of Luminescence, 179, pp. 16-20. DOI: 10.1016/j.jlumin.2016.06.021
R47. Yukhno, E.K., Bashkirov, L.A., Pershukevich, P.P., Kandidatova, I.N., Petrov, G.S., Mironova-Ulmane, N., Sarakovskis, A., Excitation and photoluminescence spectra of single- and non-single-phased phosphors based on LaInO3 doped with Dy3+, Ho3+ activators and Sb3+ probable sensitizer (2017) Journal of Luminescence, 190, pp. 298-308. DOI: 10.1016/j.jlumin.2017.05.064
R48. Grube, J. Temperature influence on NaLaF4:Er3+ green luminescence (2016) Journal of Luminescence, 179, pp. 107-113. DOI: 10.1016/j.jlumin.2016.06.046
R49. B.Polyakov, A. Kuzmin, S.Vlassov, E. Butanovs, J. Zideluns, J. Butikova, R.Kalendarev, M.Zubkins. A comparative study of heterostructured CuO/CuWO4 nanowires and thin films. Journal of Crystal Growth 480 (2017) 78–84
R50. B.Polyakov, A.Kuzmin, K. Smits, J. Zideluns, E. Butanovs, J. Butikova, S. Vlassov, S. Piskunov, Y. F. Zhukovskii. Unexpected Epitaxial Growth of a Few WS2 Layers on {1-100} Facets of ZnO Nanowires, J. Phys. Chem. C, 120 (2016) 21451-21459
R51. E. Butanovs, S. Vlassov, A. Kuzmin, S. Piskunov, J. Butikova, B. Polyakov. Fast-response single-nanowire photodetector based on ZnO/WS2 core/shell heterostructures. Appl. Mater. Interfaces 10 (2018) 13869−13876.
R52. S. Vlassov, B. Polyakov, M. Vahtrus, M. Mets, M. Antsov, S. Oras, A. Tarre, T. Arroval, R. Lohmus, J. Aarik. Enhanced flexibility and electron-beam-controlled shape recovery in alumina-coated Au and Ag core-shell nanowires. Nanotechnology 28 (2017) 505707 (10pp)
R53. S. Vigonski, V. Jansson, S.Vlassov, B.Polyakov, E.Baibuz, S.Oras, A.Aabloo, F. Djurabekova, V.Zadin. Au nanowire junction breakup through surface atom diffusion. Nanotechnology 29 (2018) 015704 (10pp)
R54. S. Vlassov, S.Oras, M.Antsov, J. Butikova, R. Lõhmus, B. Polyakov. Low-friction Nanojoint Prototype. Nanotechnology 29 (2018) 195707 (6pp)
R55. E. Butanovs, A.Kuzmin , J. Butikova, S. Vlassov, B. Polyakov, Synthesis and characterization of ZnO/ZnS/MoS2 core-shell nanowires, Journal of Crystal Growth 459 (2017) 100–104
In journals with SNIP < 1
Rx1. Dunce M., Birks E., Kuzmin A., Ignatans R., Plaude A., Antonova M., Sternberg A. X-ray Diffraction and Raman Spectroscopy Studies in Na1/2Bi1/2TiO3-SrTiO3-PbTiO3 Solid Solutions. Ferroelectrics, vol. 503, p.52-59, 2016, doi.org/10.1080/00150193.2016.1217142
Rx2. Plaude A., Ignatans R., Birks E., Dunce M., Antonova M., Sternberg A. Structure and dielectric properties at phase transition of Na1/2Bi1/2TiO3-BaTiO3 solid solutions. Ferroelectrics, vol. 500, p.47-53, 2016, doi.org/10.1080/00150193.2016.1215220
Rx3. J. Kosmaca, J. Andzane, J. Prikulis, S.Biswas, J.D. Holmes, D.Erts, Application of nanoelectromechanical Ge nanowire mass sensor for manipulation and characterization of multilayer graphene flakes Science of Advanced Materials 7(3), 552-557 (2015)
Rx4. R. Meija, G. Kunakova, J. Prikulis, J. Varghese, J.D. Holmes and D. Erts Relative Humidity Dependent Resistance Switching of Bi2S3 Nanowires. Journal of Nanomaterials, vol. 2017, Article ID 6823601, 6 pages, 2017, doi:10.1155/2017/6823601
Rx5. U. Malinovskis, A. Berzins, J. Smits, F.H. Gahbauer, R. Ferber, D. Erts, J. Prikulis. Fluorescent nanodiamond array deposition on porous anodized aluminium oxide using asperity assisted capillry force assembly. Proceedings of the Estonian Academy of Sciences, 67, (1) 416-421 (2017).
Rx6. Drunka, R., Grabis, J., Krumina, A. Microwave Assisted Synthesis, Modification with Platinum and Photocatalytical Properties of TiO2 Nanofibers (2016) Materials Science (Medžiagotyra). 22 (1), pp. 139-141 http://dx.doi.org/10.5755/j01.ms.22.1.7353
Rx7. R. Drunka, J. Grabis, D. Jankoviča, D. Rašmane, A. Krūmiņa. Ar cēlmetāliem modificētu TiO2 nanopulveru fotokatalītiskās īpašības. MSAC 2016. Materials Science and Applied Chemistry. 21st October, 2016, Riga. Proceedings and Programme, 57-62.
Rx8. Drunka, R., Grabis, J., Jankovica, Dz., Krumina, A. Microwave synthesis and properties of thin layer Pt modified TiO2 nanofibers coating (2017) Key Engineering Material, 721, 383-388 10.4028/www.scientific.net/KEM.721.383
Rx9. Drunka, R., Grabis, J., Jankoviča, D., Rašmane, D., Krūmiņa, A. Synthesis, Photocatalytic Properties and Morphology of Various TiO2 Nanostructures Modified with Gold. Proceedings of the Estonian Academy of Sciences, (2017) 66(4) 479-485 ISSN 1736-6046. e-ISSN 1736-7530 www.eap.ee/proceedings.
Rx10. Drunka, R., Grabis, J., Krūmiņa, A. Preparation of Au, Pt, Pd and Ag Doped TiO2 Nanofibers and Their Photocatalytic Properties Under LED Illumination. In: Key Engineering Materials Trans Tech Publications, (2018) 762, 283-287. DOI: 10.4028/www.scientific.net/KEM.762.283
Rx11. Jānis Grabis, Anita Letlena, Aija Krūmiņa Influence of Silver on Photocatalytic Activity of Nanosized ZnO Doped with Iron Group Metals Solid State Phenomena (2017) 267 93-97 DOI: 0.4028/www.scientific.net/SSP.267.93
Rx12. Jānis Grabis, Dzidra Jankoviča, Ints Šteins, Māra Lubāne, Inta Sīpola. "Characteristics and Sinterability of Ceria Stabilized Zirconia Nanoparticles Prepared by Chemical Methods".Materials Science (Medžiagotyra), 2018.
Rx13. Rozenberga-Voska, L., Grabis, J., Zolotarjovs, A. Synthesis of Eu2+ and Dy3+ doped nanosized strontium aluminates and their properties (2017) Key Engineering Material, 721, pp. 311-315 Online since December 2016 10.4028/www.scientific.net/KEM.721.311
Rx14. P. Lesnicenoks, L. Grinberga, L. Jekabsons, A. Antuzevičš, A. Berzina, M. Knite, G. Taurins, Š. Varnagiris, J.Kleperis, Nanostructured carbon materials for hydrogen energetics, Advanced Materials Letters, 2017, 8(1), pp. 2-7 DOI: 10.5185/amlett.2016.7088 http://www.vbripress.com/aml/articlesinpres/details/674/
Rx15.P. Lesnicenoks, J. Zemitis, L. Grinberga, G. Chikvaidze, J. Kleperis, M. Urbonavičius, S. Tučkute, D. Milčius, , Modified Graphene Sheet Stacks for Hydrogen Binding, Medziagotyra, 2017, 23 (1), pp 3-5 DOI: http://dx.doi.org/10.5755/j01.ms.23.1.13729
Rx16. V. Grehov, J.Kalnacs, A.Mishnev, K.Kundzins, Synthesis of Graphenic carbon materials on nickel particles with controlled quantity of carbon. Latvian Journal of Physics and Technical Sciences 2016. Vol 53 , N1, pp 53- 65.
Rx17. V. Grehov, J.Kalnacs, A.Mishnev, K.Kundzins, “Nitrogen adsorbtion on graphene Sponges, Synthesized by Annealing a Mixture of Nickel and carbon Powders” . Latvian Journal of Physics and Technical Sciences 2017. Vol 54 , N1, pp 36- 48.
Rx18. A. Platonenko, D. Gryaznov, S. Piskunov, Yu.F. Zhukovskii, and E.A. Kotomin, Charged oxygen interstitials in corundum: first principles simulations. - Phys. Stat. Sol. C, 2016, 13, p. 932–936.
Rx19. E. Klotins, A novel quantum field approach to photoexcited insulators. - Low Temp. Phys., 2016, 42, p. 726-732.
Rx20. A. Moskina, and I. Karbovnyk, Cathodoluminescence characterization of polystyrene–BaZrO3 hybrid composites. - Low Temp. Phys., 2016, 42, p. 760-763.
Rx21. E.A. Kotomin, R. Merkle, Yu.A. Mastrikov, M.M. Kuklja, and J. Maier. The effect of (La,Sr)MnO3 cathode surface termination on its electronic structure. ECS Trans., 2017, 77, p. 67-73. DOI: 10.1149/07710.0067ecst SNIP(2016)=0.246
Rx22. E. Klotins. Finding electron-hole interaction in quantum kinetic framework. Latvian Journal of Physics and Technical Sciences. 2018, no.3
Rx23. A.Gopejenko, Yu.F. Zhukovskii, E.A. Kotomin, Yu.A.. Mastrikov, P.V. Vladimirov, V.A. Borodin, and A. Möslang, Ab initio modelling of Y–O cluster formation in fсс-Fe lattice. - Phys. Stat. Sol. B, 2016, 253, p. 2136-2143.
Rx24. V.P. Savchyn, A.I. Popov, O.I. Aksimentyeva, H. Klym, Yu.Yu. Horbenko, V. Serga, A. Moskina, and I. Karbovnyk, Cathodoluminescence characterization of polystyrene–BaZrO3 hybrid composites. - Low Temp. Phys., 2016, 42, p. 760-763.
Rx25. H. Klym, A. Ingram, O. Shpotyuk, I. Hadzaman, V. Solntsev, O. Hotra, and A.I. Popov, Positron annihilation characterization of free volume in micro- and macro-modified Cu0.4Co0.4Ni0.4Mn1.8O4 ceramics. - Low Temp. Phys., 2016, 42, p. 764-769.
Rx26. M. Sokolov, R.I. Eglitis, S. Piskunov, and Yu.F. Zhukovskii. Ab initio hybrid DFT calculations of BaTiO3 bulk and BaO-terminated (001) surface F-centers. Int. J. Mod. Phys. B, 2017, 31, 1750251 (p. 1-15). DOI: 10.1142/S0217979217502514
Rx27. E.A. Kotomin, R. Merkle, Yu.A. Mastrikov, M.M. Kuklja, and J. Maier. The effect of (La,Sr)MnO3 cathode surface termination on its electronic structure. ECS Trans., 2017, 77, p. 67-73. DOI: 10.1149/07710.0067ecst
Rx28. A.Lushchik, Ch. Lushchik, E. Vasil’chenko, and A.I. Popov. Radiation creation of cation defects in alkali halide crystals: Review and today’s concept. Low Temp. Phys., 2018, 44, pp. 357-367.
Rx29. A.V. Bandura, R.A. Evarestov, and Yu.F. Zhukovskii, Energetic stability and photocatalytic activity of SrTiO3 nanowires: Ab initio simulations. - RSC. Adv., 2015, 5, p. 24115-24125.
Rx30. Chesnokov, O. Lisovski, D. Bocharov, S. Piskunov, Yu.F. Zhukovskii, M. Wessel, and E. Spohr, Ab initio simulations on N and S co-doped titania nanotubes for photocatalytic applications. - Phys. Scr., 2015, 90, 094013 (p.1-7).
Rx31. A. Kuzmin, A. Anspoks, A. Kalinko, A. Rumjancevs, J. Timoshenko, L. Nataf, F. Baudelet, T. Irifune, Effect of pressure and temperature on the local structure and lattice dynamics of copper(II) oxide, Phys. Procedia 85 (2016) 27-35. SNIP=0.568, DOI: 10.1016/j.phpro.2016.11.077
Rx32. A. Kuzmin, A. Kalinko, A. Anspoks, J. Timoshenko, R. Kalendarev, Study of copper nitride thin film structure, Latvian J. Phys. Tech. Sci. 53 (2016) 31-37. SNIP=0.656, DOI: 10.1515/lpts-2016-0011
Rx33. A. Kuzmin, A. Anspoks, A. Kalinko, J. Timoshenko, L. Nataf, F. Baudelet, T. Irifune, Origin of pressure-induced metallization in Cu3N: an X-ray absorption spectroscopy study, Phys. Status Solidi B 255 (2018) 1800073:1-6. DOI: 10.1002/pssb.201800073
Rx34. K. Schwartz, J. Maniks, I. Manika. A review of color center and nanostructure creation in LiF under heavy ion irradiation. Phys. Scr. 90 (2015) 094011. http://iopscience.iop.org/article/10.1088/0031-8949/90/9/094011/pdf
Rx35. R. Zabels, I. Manika, K. Schwartz, J. Maniks, R. Grants,
M. Sorokin, M. Zdorovets. Depth profiles of indentation hardness and dislocation mobility in MgO crystals irradiated with swift 84Kr and 14N ions. Appl. Phys. A: Material Science&Processing 120 (2015) 167-173. 320 (8 pages) https://doi.org/10.1007/s00339-015-9145-9
Rx36. R. Zabels, I. Manika, K. Schwartz, M. Baizhumanov, R. Grants, E. Tamanis, A. Dauletbekova, M. Zdorovets, MeV-energy Xe ion-induced damage in LiF: The contribution of electronic and nuclear stopping mechanisms. Phys. Status Sol.(b)., 253 (2016) (8)1511-1516. https://doi.org/10.1002/pssb.201552704
Rx37. R. Zabels, I. Manika, K. Schwartz, Formation of dislocations and hardening of LiF under high-dose irradiation with 5–21 MeV 12C ions , Appl. Phys. A: Material Science&Processing 123 (2017), 320 (8 pages), https://doi.org/10.1007/s00339-017-0934-1.
Rx38. D. A. Baghdasaryan, D. B. Hayrapetyana, H. A. Sarkisyan,E. M. Kazaryana and A. Medvids, Conical Quantum Dot: Electronic States and Dipole Moment, Journal of Contemporary Physics (Armenian Academy of Sciences), 2017, Vol. 52, No. 2, pp. 129–137.
Rx39. Arturs Medvids, Liga Grase, Pavels Onufrijevs, Hidenori Mimura, Volodymyr Yukhymchuk, and Gundars Mezinskis, Two-stage mechanism of Zn nanoparticles formation in ZnO crystal by Nd:YAG laser radiation, Phys. Status Solidi C 14, No. 7, 1700038 (2017) / DOI 10.1002/pssc.201700038
Rx40. A. Cvetkovs, O. Kiselova, U. Rogulis, V. Serga, R. Ignatans, Synthesis of ZnO and CdO-ZnO thin films by extraction–pyrolytic method, Latvian Journal of Physics and Technical Sciences, 2016, vol. 53, pp. 57–66; DOI: 10.1515/lpts-2016-0021,
Rx41. Sarakovskis, A., Grube, J., Strals, K., Krieke, G., Springis, M., Mironova-Ulmane, N., Skvortsova, V., Yukhno, E.K., Bashkirov, L.A., Temperature and impurity concentration effects on upconversion luminescence in LaInO3 doped with Er3+ (2016) Fizika Nizkikh Temperatur, 42 (7), pp. 733-737.
Rx42. Grube, J., Sarakovskis, A., Doke, G., Springis, M., Impact of Er3+ concentration on luminescence in NaLaF4 (2014) Latvian Journal of Physics and Technical Sciences, 51 (3), pp. 42-50. DOI: 10.2478/lpts-2014-0018
CONFERENCE ABSTRACTS:
K1. L.Trinkler, B.Berzina. Localized transitions in luminescence of AlN ceramics. 30th Scientific Conf. of ISSP LU, 2014, Riga, Latvia, Abstract Book, p. 16.
K2. P.Jankovska, V.Korsaks, L.Trinkler, B.Berzina. Luminescence of AlN nanopowder and its dependence on environment. 31th Scientific Conf. of ISSP LU, 2015, Riga, Latvia, Abstract Book, p. 9.
K3. B.Berzina, V.Korsaks, L.Trinkler. Wide band gap nitrides and oxides – materials for oxygen gas sensors. 33rd Scientific Conf. of ISSP LU 2017, Riga, Latvia, Abstract Book, p. 11.
K4. B.Berzina, V.Korsaks, L.Trinkler. Wide band gap nitrides and oxides – materials for oxygen gas optical sensors. International Conference FM&NT 2017, Riga, Latvia, Abstract Book, p. P-83.
K5. B.Berzina, L.Trinkler, V.Korsaks. Luminescent nitrogen vacancy type defects in III group element nitrides AlN and hBN. International Conference EURODIM 2018, Bydgoszcz, Poland; accepted for oral presentation.
K6. B.Berzina, V.Korsaks, L.Trinkler, R.Kirsteins. AlN based composite –white light emitter. International Conference FM&NT 2015, Riga, Latvia, Abstract Book, p. 389.
K7. B.Berzina, L.Trinkler, V.Korsaks. White light emitter based on AlN nanopowder. EuroNanoForum 2015, Riga, Latvia. http://euronanoforum2015.eu/wpcontent/uploads/2015/03/AbstractBerzina_Baiba.pdf
K8. J. Banys, A. Sternberg, M. Antonova, Š. Bagdzevičius, E. Birks, K. Bormanis, M. Dunce, R. Grigalaitis, K. Kundzins, and J. Macutkevič. Cooperation of Latvian and Lithuanian Scientists in Studies of Ferroelectrics and Related Materials. RCBJSF-2014-FMNT, Riga, Latvia, September 29 – October 2, 2014. Abstracts. Riga, 2014, p. 31.
K9. M.Dunce, E.Birks, R.Ignatans, A.Sternberg, H.Kabelka, A.Fuith, J.Perantie, J.Hagberg, M.Kundzinsh., E.Nitiss. Phase transitions in (1-x)Na0.5Bi0.5TiO3-xCaTiO3 solid solutions. 13th Russia/CIS/Baltic/Japan Symposium on Ferroelectricity (RCBJSF), Matsue, Shimane, Japan, 19-23 June, 2016
K10. M.Dunce, E.Birks, R.Ignatans, M.Antonova, A.Sternberg, J.Perantie, J.Hagberg. Nature of dielectric polarisation and electrocaloric effect in poled and depoled Na0.5Bi0.5TiO3. 13th Russia/CIS/Baltic/Japan Symposium on Ferroelectricity (RCBJSF), Matsue, Shimane, Japan, 19-23 June, 2016
K11. Laura Eglite, Reinis Ignatans, Karlis Kundzinsh, Maija Antonova, Maris Knite, Eriks Birks. STRUCTURE AND PHASE TRANSITIONS IN Yb AND Er DOPED Na0.5Bi0.5TiO3, FMNT, Tartu, Estonia, April 24-27, 2017
K12. Reinis Ignatans , Maija Antonova, Edgars Nitiss, Maris Kundzinsh, Eriks Birks, Andris Sternbergs. POLAR PHASE STABILIZATION IN THE (1-x)Na1/2Bi1/2TiO3-xATiO3 (A – Pb, Ba) SOLID SOLUTIONS BELOW MORPHOTROPIC PHASE BOUNDARY, FMNT, Tartu, Estonia, April 24-27, 2017
K13. FM&NT-2015 Functional materials and Nanotechnologies. October 5th-8th 2015. Vilnius, Lithuania, Preparation of Au modified TiO2 nanofibers and their photocatalytic activity. R. Drunka, J. Grabis, Dz. Jankovica, A. Krumina, Dz. Rasmane. Abstract Book. 128.
K14. Modificētu TiO2 Nanošķiedru sintēze un to fotokatalītiskā aktivitāte. R. Drunka, J. Grabis, Dz. Jankoviča, A. Krūmiņa, Dz. Rašmane Institute of Solid State Physics University of Latvia Abstracts of the 32nd Scientific Conference February 17-19, 2016, Riga, 128 (stenda referāts)
K15. Comparing Studies of Synthesis and Photocatalytical Properties of Various Morphology TiO2 Nanostructures Modified With With Platinum, Gold And Silver. R. Drunka, J. Grabis, Dz. Jankovica, A. Krumina, Dz. Rasmane. The 25th International Baltic Conference of Engineering Materials & Tribology BALTMATTRIB 2016 November 3-4 Riga, Latvija. Abstracts Book, 47 (referāts)
K16. Drunka, R., Grabis, J., Jankoviča, D., Krūmiņa, A., Rašmane, D. Comparing Studies of Synthesis and Photocatalytical Properties of Various Morphology TiO2 Nanostructures Modified with Precious Metals. In: Abstracts of the 33rd Scientific Conference, Latvia, Rīga, 22-24 February, 2017. Rīga: LU Cietvielu fizikas institūts, 2017, pp.95-95.
K17. Drunka, R., Grabis, J., Jankovica, D., Krumina, A., Rasmane, D. Comparing Studies of Synthesis and Photocatalytical Properties of Various Morphology TiO2 Nanostructures Modified with Gold. In: Functional Materials and nanotechnologies 2017 Book of Abstracts Tartu 2017, 86
K18. Rozenberga-Voska, L., Grabis, J. Synthesis and Photocatalytic Activity of Modified TiO2 Thin Films Prepared by Spray Pyrolysis Solid State Phenomena. In: 26th International Baltic Conference Materials Enginnering 2017 October 26-27, 2017 Kaunas, Lithuania, Conference Book, 25
K19. FM&NT-2015 Functional materials and Nanotechnologies. October 5th-8th 2015. Vilnius, Lithuania. Characteristics and sinterability of ceria stabilized zirconia nanoparticles prepared by chemical methods. J. Grabis, Dz. Jankoviča, I. Šteins, M. Lubāne, E. Sokolova.
K20. Stabilizēta cirkonija dioksīda nanodaļiņu sintēze un pārstrāde nanomateriālos. J. Grabis, Dz. Jankoviča, I. Šteins, K. Šmits, M. Lubāne Institute of Solid State Physics University of Latvia. Abstracts of the 32nd Scientific Conference February 17-19, 2016, Riga, 108 (referāts)
K21. Nanokompozītu sintēze ZnO-Zn2SnO4/Ag sistēmā un to fotokatalītiskā aktivitāte. J. Grabis, A. Letlena, Dz. Rašmane, A. Krūmiņa Institute of Solid State Physics University of Latvia Abstracts of the 32nd Scientific Conference February 17-19, 2016, Riga, 127 (stenda referāts)
K22. Parameters and sinterability of mullite-ZrO2(Y2O3) nanoparticles prepared by plasma and chemical methods J. Grabis, Dz. Jankoviča, I. Sīpola Programme & The Book of Abstracts Eighteen Annual Conference YUCOMAT 2016. Herceg Novi, Montenegro, September, 5-10, 2016, 54. (stenda referāts) http://www.mrs-serbia.org.rs/index.php/yucomat-books-of-abstracts/yucomat-2016-b
K23. Jānis Grabis, Dzidra Jankoviča, Ints Šteins, Inta Sīpola, Māra Lubāne, Parameters and sinterability of Al2O3-SiO2-ZrO2(Y2O3) nanoparticles. Ecers2017, July 9-13, Budapest. Book of Abstracts, 134-135.
K24. Grabis, J., Jankoviča, D., Šteins, I., Lubāne. M., Sīpola, I. Al2O3-SiO2-ZrO2(Y2O3) nanopowders prepared by plasmachemical and sol-gel synthesis. In: Abstracts of the 33rd Scientific Conference February 22-24, 2017, Rigas, Institute of Solid State of Physics University of Latvia, 107
K25. Grabis, J., Jankoviča, D., Šteins, I., Lubāne. M., Sīpola, I. Parameters and sinterability of Al2O3-SiO2-ZrO2(Y2O3) nanoparticles. EcerS2017 15th Conference & Exibition of the European Ceramic Society July 9-13, 2017, Budapest, Hungary Book of Abstracts, AKCongress 134-135
K26. Grabis, J., Jankoviča, D., Šteins, I., Lubāne, M., Sīpola, I. Characteristics and sinterability of ceria stabilized zirconia nanoparticles prepared by chemical methods. In: 26th International Baltic Conference Materials Enginnering 2017 October 26-27, 2017 Kaunas, Lithuania, Conference Book, 24
K27. Grabis, J., Letlena, A., Krūmiņa, A. Nanosized ZnO photocatalysts doped with iron group metals and silver. In: 26th International Baltic Conference Materials Enginnering 2017 October 26-27, 2017 Kaunas, Lithuania, Conference Book,45-46
K28. Grabis, J., Jankoviča, D., Šteins, I., Sīpola, I., Lubāne. M. Spark plasma sintering of mullite-3Y-TZP nanopowders prepared by thermal plasma and sol-gel synthesis methods. EUROMAT 2017 September 17-22, 2017, Thesaloniki, Greece, Symposium B.5 –P-TUE-P1-4.
K29. Synthesis of Eu2+ and Dy3+ doped nanosized strontium aluminates and their properties. L. Rozenberga-Voska, J. Grabis, A. Zolotarjovs. The 25th International Baltic Conference of Engineering Materials & Tribology BALTMATTRIB 2016 November 3-4 Riga, Latvija. Abstracts Book, 99 (stenda referāts)
K30. Grabis, J., Jankoviča, D., Šteins, I., Lubāne. M., Sīpola, I. Preparation and sinterability of Rozenberga-Voska, L., Grabis, J., Zolotarjovs, A. Synthesis of Eu2+ and Dy3+ doped strontium aluminates and their properties. In: Abstracts of the 33rd Scientific Conference February 22-24, 2017, Rigas, Institute of Solid State of Physics University of Latvia, 108.
K31. A. Knoks, J. Kleperis, L. Grīnberga, Peculiarities of TiO2 nanotube optical properties, Rīgas Tehniskās universitātes 57. starptautiskās zinātniskās konferences “Materials Science and Applied Chemistry - MSAC 2016” zinātnisko rakstu krājums , 102.-107. lpp.
K32. P. Lesničenoks, L. Grīnberga, J. Kleperis, L. Jēkabsons, G. Tauriņš, M. Knite, Carbon Materials for Hydrogen Storage and Sensing, Rīgas Tehniskās universitātes 57. starptautiskās zinātniskās konferences “Materials Science and Applied Chemistry - MSAC 2016” zinātnisko rakstu krājums, 112.-116. lpp.
K33. P. Lesničenoks, A. Berzina, I. Lukoševičš, L. Grīnberga, L. Jēkabsons, J. Kleperis, M. Knite, G. Tauriņš, Complex multilayer carbon structures for green energetics, Proceedings of the Estonian Academy of Sciences, 2017, 66(4), pp. 403-408 https://doi.org/10.3176/proc.2017.4.26
K34. A.Knoks, J. Kleperis, L. Grinberga, Raman spectral identification of phase distribution in anodic titanium dioxide coating, Proceedings of the Estonian Academy of Sciences, 2017, 66(4), pp. 422-429 https://doi.org/10.3176/proc.2017.4.19
K35. P. Lesnicenoks, J. Zemitis, L. Grinberga, G. Chikvaidze, J. Kleperis, M. Urbonavičius, S. Tučkute, D. Milčius, Elaboration of graphitic nanosheet structures for hydrogen binding, 17th international conference-school Advanced materials and technologies 2015; Palanga, Lithuania 27.-31.08.2015.
K36. A. Knoks, J. Kleperis, L. Grinberga, I.Grauduma, Structural, optical and photo-electrochemical research of anodised TiO2 nanotube arrays, International conference FM&NT 2015, Vilnius, Lithuania; 5.-8.10.2015.
K37. A. Knoks, J. Kleperis, L. Grīnberga, Anodization pre-treatment influence on grows facilities of TiO2 nanotube arrays, International conference EuroNanoForum 2015, Riga, Latvia; 10.-12.06.2015.
K38. A. Knoks, J. Kleperis, L. Grīnberga, Photoactivity of anodized TiO2 nanostrusctures, 17th international conference-school Advanced materials and technologies 2015; Palanga, Lithuania 27.-31.08.2015.
K39. A. Knoks, J. Kleperis, L. Grīnberga, Peculiarities of TiO2 nanotube optical properties, Rīgas Tehniskās universitātes 57. starptautiskā zinātniskā konference “Materials Science and Applied Chemistry - MSAC 2016”, 21.-22. oktobris, 2016, Rīga, Latvija
K40. P. Lesnicenoks, L. Grīnberga, L. Jekabsons, A. Bērziņa, G. Tauriņš, J. Kleperis, Nanostructured carbon materials for hydrogen energetics, European Advanced Materials Congress, (EAMC), 23.–25. augusts 2016, Stokholma, Zviedrija
K41. P. Lesnicenoks, L. Grīnberga L. Jekabsons, A. Bērziņa, G. Tauriņš, J. Kleperis, Investigation of Gas Sorption Properties on Intercalated Carbon Nanomaterials with Large Surface Area, 18. starptautiskā skola - konference “Advanced materials and technologies”, 27.-31. augusts, 2016, Palanga, Lietuva
K42. P. Lesničenoks, L. Grīnberga, J. Kleperis, L. Jēkabsons, G. Tauriņš, M. Knite, Carbon Materials for Hydrogen Storage and Sensing, Rīgas Tehniskās universitātes 57. starptautiskā zinātniskā konference “Materials Science and Applied Chemistry - MSAC 2016”, 21.-22. oktobris, 2016, Rīga, Latvija
K43. Lesničenoks, P., Bērziņa, A., Grīnberga, L., Jēkabsons, L., Kleperis, J., Knite, M., Taurins, G. Complex Multilayer Graphene Structures for Hydrogen Energetics. International Conference "Functional Materials and Nanotechnologies 2017": Igaunija, Tartu, 24.-27. aprīlis, 2017
K44. A.Knoks, J. Kleperis, L. Grinberga, Raman spectral identification of phase distribution in anodic titanium dioxide coating, International Conference "Functional Materials and Nanotechnologies 2017", Igaunija, Tartu, 24.-27. aprīlis, 2017
K45. A. Knoks, J. Kleperis, L. Grīnberga, TiO2 nanocaurulīšu augšanas īpatnības anodēšanas procesā, Latvijas Universitātes Cietvielu fizikas institūta 31. zinātniskajā konference, 24.-26. februāris, 2015. Rīga, Latvija.
K46. G. Baumanis, K. Auziņš, P. Lesničenoks, J. Zemītis, J. Kleperis, Reciklēta grafīta vairāk-slāņu grafēna pielietojums elektrovadošas tintes izstrādē, Latvijas Universitātes Cietvielu fizikas institūta 31. zinātniskajā konference, 24.-26. februāris, 2015.Rīga, Latvija.
K47. A. Knoks, J. Kleperis, L. Grīnberga, Titāna dioksīda alotropiskās modifikācijas, kristalītu izmēri un fotoaktivitāte, LU CFI 32. Zinātniskās konference, 17.-19. februāris, 2016, Rīga, Latvija
K48. I. Grauduma, A. Knoks, J. Kleperis, Nanostrukturēta TiO2 izmantošana oglekļa dioksīda reducēšanai, LU CFI 32. Zinātniskās konference, 17.-19. februāris, 2016, Rīga, Latvija
K49. E. Laiviņa, K. Gauja, J. Kleperis, M. Zubkins, A. Knoks, Fizikālo un fotoelektroķīmisko īpašību pētījumi ar magnetrona izputināšanas metodi iegūtam titāna dioksīdam, LU CFI 32. Zinātniskās konference, 17.-19. februāris, 2016, Rīga, Latvija
K50. K. Gauja un E. Laiviņa, Rīgas Franču liceja 12.kl. skolnieces “Plānslāņu foto - aktīvā titāna dioksīda iegūšana un tā fizikālo un foto - elektroķīmisko īpašību izpēte” (darba konsultants A. Knoks), Latvijas 40. skolēnu zinātniskā konference, 23. aprīlis, 2016, Rīga, Latvija
K51. P. Lesničenoks, L. Grīnberga, J. Straumēns, J. Kleperis, Reaktors un metodika gāzu sorbcijas/desorbcijas pētījumiem dažādiem materiāliem ar PVT (Sieverta) metodi temperatūru intervālā +/-200°C, LU CFI 32. Zinātniskās konference, 17.-19. februāris, 2016, Rīga, Latvija,
K52. A. Knoks, J. Kleperis, L. Grīnberga, Titāna dioksīda alotropiskās modifikācijas, kristalītu izmēri un fotoaktivitāte, LU CFI 32. Zinātniskās konference, 17.-19. februāris, 2016, Rīga, Latvija
K53. A. Knoks, J. Kleperis, L. Grīnberga, A. Medvids, P. Onufrijevs, Titāna dioksīda sintēzes un apstrādes ietekme uz virsmas fāžu sadalījumu un fotoaktivitāti, LU CFI 33. Zinātniskās konference, 22.-24. februāris, 2017, Rīga, Latvija
K54. P. Lesničenoks, L. Jēkabsons, J. Kleperis, L. Grīnberga, G. Tauriņš, Elektroķīmiski eksfoliēta grafēna plākšņu sistēmu CO2 saistīšanas spēja normālapstākļos un pazeminātās temperatūrās, LU CFI 33. Zinātniskās konference, 22.-24. februāris, 2017, Rīga, Latvija
K55. A. Knoks, J. Kleperis, L. Grīnberga, Izkarsēšanas atmosfēras ietekme uz anodisku TiO2 pārklājumu fotokatalītiskām īpašībām, LU CFI 34. Zinātniskās konference, 20.-22. februāris, 2018, Rīga, Latvija
K56. J. Kleperis, P. Lesničenoks, Grafēnu interkalācija ar Cu defektu zonās un uz plāksnēm CO2 reģenerācijai, LU CFI 34. Zinātniskās konference, 20.-22. februāris, 2018, Rīga, Latvija
K57. Valentin Grehov, Janis Kalnacs, Alexandr Vilken, Anatolij Mishnev, George Chikvaidze, Maris Knite, Dmitrij Saharov. Graphene Nanosheets Grown on Ni Particles. Joint 12th Russia/CIS/Baltic/Japan Symposium on Ferroelectricity and 9th International Conference Functional Materials and Nanotechnologies Riga September 29 – October 2, 2014; Book of Abstracts p 303.
K58. Valentin Grehov, Janis Kalnacs Anatolij Mishnev, Karlis Kundzins “Few layered graphene sheets grow mechanisms on the surface of catalists” Internationale conference FM&NT 2015 Vilnius 5-8 of October, poster 029 Book of Abstracts p.115
K59. Valentīns Grehovs, Janis Kalnacs, Anatolijs Mišnevs, Kārlis Kundziņš, Few Layer Graphene Grow Mechanisms On Katalisator Surface. Institute of Slid State Physics, UL 32.Scientific Conference Riga 2016, February 17 – 19. Book of Abstract p. 129.
K60. Valentins Grehovs, Janis Kalnacs, Anatolijs Mishnevs, Karlis Kundzins Graphene Sponge production and investigation Institute of Slid State Physics, UL 32.Scientific Conference Riga 2016, February 17 – 19. Book of Abstract p. 130.
K61. V. Grehov, J.Kalnacs, A.Mishnev, K.Kundzins, Graphene Sponge Production by Anealing Mixture of Ni and Carbon Powders in Inert Atmosfere Contaned Hydrogen International conference EcoBalt2016, Tartu, Estonia 9th – 12th October 2016 Abstract book p. 36.
K62. J.R. Kalnin and E.A. Kotomin. "The effective diffusion coefficient in two-dimensional systems". Abstract: 16th International Conference "Information Technologies and Management", IT&M'2018 (Riga, Latvia, April 2018). p. 32. OR.
K63. R.I. Eglitis and A.I. Popov, “Ab initio calculations of the optical properties and polar (001) surfaces of YAlO3”. E-MRS 2016 Fall Meeting (Warsaw, Poland, September 2017).Abstracts: E, p. 119-1.
K64. E. Kotomin. "Effect of surface termination on the oxygen reduction rate on cathodes for oxide fuel cells". The 18th Israel Materials Engineering Conference IMEC-18 (Dead Sea, Israel, February 2018). Proceedings: p. 30. IR.
K65. E-MRS 2014 Spring Meeting (Lille, France, May, 2014). E.A. Kotomin, R. Merkle, Yu.A. Mastrikov, M.M. Kuklja, and J. Maier, „Ab initio modeling of oxygen reduction reaction in mixed conducting perovsites for solid oxide fuel cells”. Abstract: CC.1.6.
K66. Electrochemistry workshop, (Asilomar, USA, July, 2014). E.A. Kotomin, Yu. Mastrikov, and M. Kuklja, "Structural instability of perovskite solid solutions".
K67. Joint 12th RCBJCF Symposium and 9th FMNT Conference (Riga, Latvia, September-October, 2014). R. Merkle, D. Poetzsch, D. Gryaznov, E.A. Kotomin, and J. Maier, ”Mixed conducting perovskites as solid oxide fuel cell cathode materials: Insight from experiments and theory”. Abstracts: p. 75.
K68. Materials Science and Technology (MS&T-14) (Pittsburgh, USA, October, 2014). M.M. Kuklja, E.A. Kotomin, D. Fuks, Yu. Mastrikov, and O. Sharia, "Disorder and structural stability of complex perovskites for solid oxide fuel cells: ab initio modeling". Abstracts, p. 103.
K69. WG4 COST Meeting, Action CM 1104 "Reducible Oxide Chemistry" (Riga, Latvia, April, 2014). D. Gryaznov, J. Begens, and E.A. Kotomin, “First principles calculations on oxygen vacancy behaviour in Sr-doped complex perovskites for permeation membranes and solid oxide fuel cells”. Abstracts: p. 23.
K70. E-MRS 2014 Spring Meeting (Lille, France, May, 2014). M. Arrigoni, D. Gryaznov, E.A. Kotomin, and J. Maier, „Confinement effects for ionic carriers in ABO3 perovskite ultrathin films”. – Abstract: EO.5.3.
K71. E-MRS 2014 Fall Meeting (Warsaw, Poland, September, 2014). D. Gryaznov, "First principles calculations on oxygen vacancy behaviour in Sr-doped complex perovskites for permeation membranes and solid oxide fuel cells". Abstracts: A5.21.
K72. E-MRS 2014 Spring Meeting (Lille, France, May, 2014). E.A. Kotomin, M.M. Kuklja, D. Fuks, Yu.A. Mastrikov, and J. Maier, „A comparative study of structural stability of complex perovskites for solid oxide fuel cells: First principles thermodynamic calculations”. – Abstract: C.4.4.
K73. A. Platonenko, D. Gryaznov, Yu.F. Zhukovskii, and E.A. Kotomin, “Ab initio simulations on properties and mobility of interstitial oxygen in corundum”. E-MRS 2016 Fall Meeting (Warsaw, Poland, September 2017).Abstracts: E, p. 120-3.
K74. A. Usseinov, D. Gryaznov, F. Abuova, A. Akilbekov, A. Dauletbekova, and A.I. Popov, “Ab initio study of optical properties for Co-doped MgF2”. E-MRS 2016 Fall Meeting (Warsaw, Poland, September 2017). Abstracts: E, p. 120-4.
K75. G. Zvejnieks, A. Anspoks, E.A. Kotomin, and V.N. Kuzovkov. “Kinetic Monte Carlo modeling of Y2O3 nanoparticle formation in radiation resistant matrices”. E-MRS 2016 Fall Meeting (Warsaw, Poland, September 2017). Abstracts: E, p. 120-5.
K76. E.A. Kotomin, V.N. Kuzovkov, A.I. Popov, J. Maier, and R. Vila, “Kinetics of diffusion-controlled F-center annealing in binary oxide materials”. E-MRS 2016 Fall Meeting (Warsaw, Poland, September 2017). Abstracts: E, p. 122-1.
K77. A.I. Popov, V.N. Kuzovkov, A.Ch. Lushchik, and E.A. Kotomin, “F-type center thermal annealing in irradiated and thermochemically reduced binary complex oxides”. Abstracts: E, p. 122-2. E-MRS 2016 Fall Meeting (Warsaw, Poland, September 2017).
K78. V.N. Kuzovkov, E.A. Kotomin, and A.I. Popov, “Kinetics of dimer F2-type center annealing in ionic solids”. XVIII. 19th International Conference on Radiation Effects in Insulators - REI 19 (Versailles, France, July 2017).Abstract: p. 68.
K79. A.I. Popov, V.N. Kuzovkov, A.Ch. Lushchik, and E.A. Kotomin, “Thermal annealing of F-type color centers in irradiated oxides: A critical analysis of experimental and theoretical results“.XVIII. 19th International Conference on Radiation Effects in Insulators - REI 19 (Versailles, France, July 2017). Abstract: p. 89.
K80. E.A. Kotomin, V.N. Kuzovkov, A.I. Popov, J. Maier, and R. Vila, „Anomalous kinetics of diffusion-controlled F center annealing in neutron irradiated sapphire”. XVIII. 19th International Conference on Radiation Effects in Insulators - REI 19 (Versailles, France, July 2017).Abstract: p. 153.
K81. A. Platonenko, D. Gryaznov, Yu.F. Zhukovskii, S. Piskunov, and E.A. Kotomin, „Ab initio simulations of interstitial oxygen migration in corundum crystals“.XVIII. 19th International Conference on Radiation Effects in Insulators - REI 19 (Versailles, France, July 2017). Abstract: p. 219.
K82. 12th International Conference "Information Technologies and Management", IT&M'2014 (Riga, Latvia, April, 2014). Yu.N. Shunin, Yu.F. Zhukovskii, V.I. Gopeyenko, N. Burlutskaya, T. Lobanova-Shunina, and S. Bellucci, “Simulation of fundamental properties in CNT- and graphene-based nanoporous materials: Electromechanics and electromagnetics”. Abstracts: p. 17-18.
K83. 15th International Workshop on Nanoscience and Nanotechnology, n&n-2013 (Frascati, Italy, October, 2014). Yu.N. Shunin, S. Bellucci, Yu.F. Zhukovskii, V.I. Gopeyenko, T. Lobanova-Shunina, and N. Burlutskaya, "Nanocarbon-based Fe-Pt spintronic devices: models and simulation".
K84. 4th International Workshop on Nanocarbon Photonics and Optoelectronics (Polvijarvi, Finland, July-August, 2014). Yu.N. Shunin, Yu.F. Zhukovskii, V.I. Gopeyenko, N. Burlutskaya, T. Lobanova-Shunina, and S. Bellucci, "Simulation of electromagnetic properties in CNT- and graphene-based nanomaterials and nanodevices". Abstracts: p. 74.
K85. Joint 12th RCBJCF Symposium and 9th FMNT Conference (Riga, Latvia, September-October, 2014). Yu.N. Shunin, Yu.F. Zhukovskii, V.I. Gopeyenko, N. Burlutskaya, T. Lobanova-Shunina, and S. Bellucci, “Electromechanics and electromagnetics of CNT- and graphene-based nanoporous materials: Interconnects and nanosensoring”. Abstracts: p. 264.
K86. 12th International Conference IT&M'2014 (Riga, Latvia, April, 2014). A. Platonenko, S. Piskunov, D. Bocharov, Yu.F. Zhukovskii, and S. Bellucci, “Ab initio simulations on Fe-Pt nanoclusters of various morphology and CNT growth upon them”. Abstracts: p. 23-25.
K87. Yu.A. Mastrikov, P.V. Vladimirov, V.A. Borodin, S. Koch, A.Gopejenko, Yu.F. Zhukovskii, E.A. Kotomin, and A.Möslang, „Ab initio modeling of the Y, O solute interaction in iron matrix”. XVIII. 19th International Conference on Radiation Effects in Insulators - REI 19 (Versailles, France, July 2017). Abstract: p. 218.
K88. Joint 12th RCBJCF Symposium and 9th FMNT Conference (Riga, Latvia, September-October, 2014). A. Chesnokov, O. Lisovskii, D. Bocharov, S. Piskunov, Yu.F. Zhukovskii, M. Wessel, and E. Spohr, “Ab initio simulations on N and S co-doped titania nanotubes for photocatalytic applications”. Abstracts: p. 272.
K89. J.Timoshenko, "Temperature-dependence of copper nitride lattice dynamics probed by EXAFS spectroscopy and evolutionary algorithm", E-MRS 2015 Spring Meeting, (Lille, France, May, 2015).
K90. J.Timoshenko, "Reverse Monte Carlo/evolutionary algorithm approach for the analysis of EXAFS data from distant coordination shells of crystalline materials", "RMC-6", 17.-19.09.2015, Budapest, Hungary.
K91. A. Kuzmin, A. Anspoks, A. Kalinko, J. Timoshenko, L. Nataf, F. Baudelet, T. Irifune, Origin of pressure-induced metallization of copper nitride: an x-ray absorption spectroscopy study, FM&NT-2017, April 24-27, Tartu, Estonia.
K92. A. Kuzmin, I. Jonane, A. Anspoks, A. Kalinko, R. Chernikov, X-ray absorption spectroscopy study of nanosized cupric oxide, EMRS-2017, 22-26.05.2017, Strasbourg, France.
K93. E.Pentjuss, A.Lusis, J.Gabrusenoks, G.Bajars (2015) Environment humidity effect on the weight of carbonizes Na-Al-Si glass fabrics recovery after heating. IOP Conf. Ser.: Mater. Sci. Eng. 77 012021 doi:10.1088/1757-899X/77/1/012021 http://iopscience.iop.org/article/10.1088/1757-899X/77/1/012021
K94. I.Liepina, G.Bajars, M.Rublans, J.Kleperis, A.Lusis, E.Pentjuss (2015) Structure and photocatalytic properties of TiO2-WO3 composites prepared by electrophoretic deposition. IOP Conf. Ser.: Mater. Sci. Eng. 77 012039 http://iopscience.iop.org/article/10.1088/1757-899X/77/1/012039
K95. E.Pentjuss, A.Lusis, J.Gabrusenoks, G.Bajars (2014) Properties of carbonized Na-Al-Si glass fabrics. Book of Abstracts: Joint symposium RCBJSF-2014-FM&NT, Riga, Latvia, p.336.
K96. A.Lusis, E.Pentjuss, G.Bajars, J.Gabrusenoks, U.Sidorovicha (2014) A comparative study of natural fiber and glass fiber fabrics properties with metal or oxide coatings. Book of Abstracts: Joint symposium RCBJSF-2014-FM&NT, Riga, Latvia, p.337.
K97. A.Lusis, E.Pentjuss, G.Bajars, U.Sidorovicha, G.Strazds (2015) A comparative study of natural fiber and glass fiber fabrics properties with metal or oxide coatings. IOP Conf. Ser.: Mater.Sci.Eng. 77 012022 doi:10.1088/1757-899X/77/1/012022http://iopscience.iop.org/article/10.1088/1757-899X/77/1/012022
K98. K. Schwartz, J. Maniks, I. Manika. Irradiation Induced Nanostructures in LiF Crystals and Possible Applications.International Conference on Functional Materials and Nanotechnologies FM&NT 29.09.- 02.10. 2014, Riga, Latvia. 1. Abstracts p.91.
K99. R. Zabels, I. Manika, K. Schwartz, J. Maniks, M. Sorokin, A. Dauletbekova, M. Zdorovets. Depth Profiles of Indentation Hardness and Dislocat ion Mobility in MgO Single Crystals Irradiated with Swift Kr and N Ions. International Conference on Functional Materials and Nanotechnologies FM&NT 29.09.- 02.10. 2014, Riga, Latvia, Abstracts p.343.
K100. R. Zabels, I. Manika, K. Schwartz, J. Maniks, R. Grants, E. Tamanis. Formation of dislocations along tracks of swift heavy ions in LiF crystals –9. International Symposium on Swift Heavy Ions in Matter (SHIM-2015), May 18-21, 2015, Darmstadt, Germany, Abstracts, p. 79.
K101. I.Manika, J.Maniks, A.Dauletbekova, R.Zabels, R.Grants, M.Baizhumanov. Formation of color centers and extended defects in LiF irradiated with swift 131Xe ions: contribution of electronic excitation and impact mechanisms.18th International Conference on Radiation Effects in Insulators (REI-18), 26th to 31st October, 2015, Jaipur, Rajasthan, India 2. Abstracts, p.138.
K102. R. Zabels, I. Manika, R. Grants. Nanostrukturēšanās un dislokāciju veidošanās procesi ar MeV enerģijas joniem apstarotos LiF un MgO kristālos. Riga Technical University 56th International Scientific Conference, 14–16 October 2015, Riga, Latvia 5. Program, p.33.
K103. Medvids, A., Onufrijevs, P., Daukšta, E., Mimura, H.”"Mechanism of Zn Nanoparticles Formation in ZnO Crystal by Laser Radiation” 5th International Symposium on Transparent Conductive Materials (TMS 2014), Greece, Platanias, 12.-17. Oktober, 2014. Platanias, 2014.
K104. Dz.Berzins, A.Fedotovs, U.Rogulis, A.Medvids, P.Onufrijevs, „Optical Detected Magnetic Resonance Spectra in ZnO”, Joint 12th Russia/CIS/Baltic/Japan Symposium on Ferroelectricity and 9th International Conference Functional Materials and Nanotechnologies, 2014.
K105. A. Medvid, P.Onufrijevs, H.Mimura, „Mechanism of Zn nanoparticles formation in ZnO crystal by laser radiation: electrical and optical properties”, Materials of Conference, Laser Technologies. Laser and Their Application, June 17-19, 2015, Truskavets, Ukraine, 2015.
K106. A. Medvid, P.Onufrijevs "Zn nanodaļiņu veidošana pie ZnO kristāla virsmas ar Nd:YAG lāzera starojumu: eksperiments, modelis un pielietojums". CFI seminārs 26.11.2015.
K107. Arturs Medvids, Pavels Onufrijevs, Edvins Dauksta, Liga Grase, Gundars Mezinskis, Hidenori Mimura, “Three Thresholds of ZnO Crystal Damage by Nd:YAG Laser Radiation: from Intrinsic Point Defects’ Generation till Ablation” Book of Abstracts of Inter-Academia 2015 : 14th International Conference on Global Research & Education. p. 222-223. 2015
K108. Medvids, A., Onufrijevs, P., Daukšta, E. Formation of Zn Nanoparticles in ZnO crystal by Nd:YAG Laser Radiation: Experiments, Model and Application. In: Abstracts of the 32nd Scientific Conference, Latvia, Riga, 17-19 February, 2016. Riga: Institute of Solid State Physics University of Latvia, 2016, pp.131-131.
K109. Artūrs Medvids, Pāvels Onufrijevs, Edvīns Daukšta, Kenji Murakami, Masaru Shimomura, “Rutile - Anatase Phase Transition in TiO2 Induced by Laser Radiation”, Book of Abstracts. The 6th International Symposium on Transparent Conductive Materials, p. 55 , Chania, Greece, October 9-13, 2016.
K110. Artūrs Medvids, Pāvels Onufrijevs, Līga Grase, Ilze Birska, “Mechanism of Zn Nanoparticles Formation in ZnO Crystal by Nd:YAG Laser Radiation”, Abstracts of the 33rd Scientific Conference, February 22-24, 2017, Riga, p.115, 2017.
K111. Arturs Medvids, Pavels Onufrijevs, Liga Grase, Ilze Birska, Hidenori Mimura, “Two Stage Mechanism of Zn Nanoparticles Formation in ZnO Crystal by Nd:YAG Laser Radiation”, GADEST 2017, pp. , 2017.
K112. (Keynote Speaker) A. Medvids, “A three-stage mechanism of ZnO nanoparticles formation at the surface of ZnO crystal by laser radiation”, Programm of the 19th Nano Congress for Next Generation, Brussels, Belgium, p.23, 2017.
K113. M. Kemere, J. Sperga, U. Rogulis, J. Grube, G. Krieke, Photoluminescence properties of double RE doped oxyfluoride glasses and glass-ceramics, International Conference LUMDETR’2015, Tartu, Estonia, p. Tu-P-36 (stenda referāts).
K114. M. Kemere, U. Rogulis, S. Schweizer, F. Steudel, S. Loos, A. Ch. Rimbach, R. Ignatans, Luminescence and quantum efficiency of europium doped oxyfluoride glasses and glass-ceramics, Abstracts of the 12th International Young Scientist conference “Developments in Optics and Communications” DOC, 2016, p. 23 (stenda referāts).
K115. J. Sperga, M. Kemere, U. Rogulis, J. Grube, Luminescence of europium and dysprosium co-doped oxyfluoride glasses, Abstracts of the 12th International Young Scientist conference “Developments in Optics and Communications” DOC, 2016, p. 17 (stenda referāts).
K116. M. Kemere, J. Sperga, U. Rogulis, J. Grube, Luminescence properties of europium and dysprosium co-doped oxyfluoride glasses, 59th Scientific Conference for Young Students of Physics and Natural Sciences, Open Readings 2016, Vilnius, Lithuania, 2016, P3-05 (stenda referāts).
K117. M. Kemere, U. Rogulis, J.Sperga, Studies of photoluminescence and energy transfer in europium and dysprosium co-doped oxyfluoride glasses and glass ceramics, 15th Conference & Exhibition of the European Ceramic Society (ECerS2017), Abstracts, 2017, Budapest, Hungary, No. 575, p. 380. (stenda referāts)
K118. Gatis Priedītis, Meldra Ķemere, Andris Antuzevičs, Uldis Rogulis, Ar eiropiju un gadolīniju aktivētu oksifluorīdu stikla keramiku fotoluminiscence, LU CFI 33. zinātniskās konferences tēzes, 2017, 37. lpp. (stenda referāts)
K119. Uldis Rogulis, Andris Fedotovs, Andris Antuzevičs, Dzintars Bērziņš, Paramagnētisku centru optiska detekcija aktivētās oksifluorīdu stikla keramikās, LU CFI 33. zinātniskās konferences tēzes, 2017, 93. lpp. (mutiskais referāts)
K120. O. Kiselova, A. Cvetkovs, U. Rogulis, V. Serga, R. Ignatans, K. Kundzins, Studies of zinc oxide thin films synthesized by extraction – pyrolytic method, Abstracts of the 11th International Young Scientist conference “Developments in Optics and Communications” DOC, Riga, 2015, p. 48 (stenda referāts).
K121. O. Kiseļova, A. Cvetkovs, U. Rogulis, V.Serga, R. Ignatāns, K. Kundziņš, Cinka oksīdu plāno kārtiņu sintēze ar ekstrakcijas – pirolītisko metodi LU CFI 31. zinātniskās konferences tēzes, 2015, 65. lpp (stenda referāts).
K122. O. Kiseļova, A. Cvetkovs, U. Rogulis, V.Serga, R. Ignatāns, K. Kundziņš, Ar ekstrakcijas – pirolītisko metodi sintezētu cinka oksīdu plāno kārtiņu īpašības, RTU 56. Starptautiskā zinātniskā konference, 2015, sekcija: “Daudzfunkcionālie materiāli un kompozīti, fotonika un nanotehnoloģijas”, stenda referāts Nr.4.
K123. RTU konference 2015. Mutiskais referāts. B.Polyakov, “CuO-WO3 and ZnO-WO3 metāla oksīdu nanovadu heterostrukūras”
K124. LU CFI 32. Zinātniskā konference (2016. g. 17.-19. Februārī, Rīgā): J. Žideļūns, B. Poļakovs, E. Butanovs, J. Butikova, A. Kuzmins, “No metāla oksīdu nanovadien veidoti kodola-apvalka nanomateriāli” (mutiskais referāts)
K125. 13th International student and young scientists conference “Developments in Optics and Communications 2017”. Rīga, April 2017. E. Butanovs, B. Polyakov. Poster: “Engineering of metal sulfide nanowire photoresistors”.
K126. 33 Annual ISSP conference, Rīga, February 2017. E. Butanovs, B. Polyakov. Oral talk: “Engineering of metal sulfide nanowire photodetectors”.
K127. International conference “Functional materials and nanotechnologies 2017”, Tartu, April 2017. E. Butanovs, B. Polyakov. Poster: “Engineering of metal sulfide nanowire photoresistors”.
PhD THESIS:
P1. M. Dunce “Fāzu pārejas un fizikālās īpašības cietajos šķīdumos uz Na½B½ TiO3 bāzes”, LU 2014
P2. G. Kunakova „Lādiņnesēju transports bismuta halkogenīdu nanovadu virsmas slānī un tilpumā ” (aizstāvēts 2015. gadā LU Ķīmijas fakultātē, ar ESF programmas atbalstu)
P3. R. Popļausks „Nanotilpumu vielu adresējama pārnese ar nanoporainām zondēm” (aizstāvēts 2014. gadā LU Ķīmijas fakultātē, ar ESF programmas atbalstu)
P4. M. Kodols „Aktīvu volframātu fotokatalizatoru sintēzes tehnoloģijas izstrāde” Aizstāvēts 2015. gadā RTU
P5. R. Drunka “Modificētu TiO2 fotokatalizatoru izstrāde un to īpašības” 2018. gada 29. maijā iesniegts Latvijas Universitātes Studiju departamentā aizstāvēšanai LU Ķīmijas fakultātes Promocijas padomē.
P6. J. Timošenko “Kristālisko materiālu struktūras statiskās un termiskās nesakārtotības modelēšana ar apgriezto Monte-Karlo metodi”
P7. A. Anspoks “Lokālās struktūras relaksācijas pētījumi nanomateriālos”, LU 2014
P8. G. Kučinskis “Nanostruturēta LiFePO4 tilpuma un plānslāņu litija jonu bateriju katodmateriālu pētījumi”, LU 2015
P9. R. Zabels “Ātro jonu izraisītie struktūras un mikro-mehānisko īpašību modifikācijas procesi platzonas jonu kristālos” LU 2015 Darba vadītājs- Dr. habil.fiz. J.Maniks
P10. E. Daukšta „Optimization of cadmium zinc telluride crystal physical parameters by nanosecond laser” aizstāvēts RTU Materiālzinātnes un lietišķās ķīmijas fakultātē 2015, vadītāji A.Medvids, A. Mičko
P11. A. Antuzevičs, “S-stāvokļa retzemju jonu lokālā struktūra fluorīdos un oksifluorīdu stikla keramikās”, promocijas darbs, Rīga, LU, 2017.
P12. J. Grūbe, “Luminiscences procesi ar Er3+ aktivētā NaLaF4”, LU 2015
P13. A. Voitkāns “Struktūra un fotofizikālie procesi 0D un 1D InGaN kompozītu materiālos”, LU 2014
MASTER’S THESIS:
M1. R. Ignatāns “Nātrija-bismuta titanātu saturošu cieto šķīdumu struktūra”, aizstāvēts LU Fizikas-matemātikas fakultātē 2015, vadītājs Dr.Phys.Ē.Birks,
M2. G. Pētersons “Slāņainu grafēns/Bi2Se3 struktūru sintēze” aizstāvēts LU Ķīmijas fakultātē 2016, vadītājs D. Erts, J. Andžāne
M3. K. Biezā “Ultraplānu bismuta selenīda nanostruktūru iegūšanas metodes” aizstāvēts LU Ķīmijas fakultātē 2017, vadītāji D. Erts, J. Andžāne)
M4. K. Kovaļevskis “Jauna veida cinka oksīda/poliakrilnitrila nanokabeļu struktūras un optisko īpašību saistība”, aizstāvēts LU Fizikas un matemātikas fakultātē 2015, vadītāji D. Erts, R. Viter)
M5. J. Janukoviča "Ultraplānu anodizēta alumīnija oksīda saturošu optisko slāņu iegūšana" – aizstāvēts LU Ķīmijas fakultātē 2014, vadītāji D. Erts, R. Popļausks
M6. I. Apsīte “Ultraplānu anodizēta alumīnija oksīda saturošu daudzslāņu sistēmu iegūšana un optiskās īpašības” – aiztāvēts LU Ķīmijas fakultātē 2015, vadītājs D. Erts,
M7. P. Rodionovs “Nanodaļiņu sintēze sistēmās TiO2-ZnFe2O4, ZnO-ZnFe2O4 un to fotokatalītiskā aktivitāte” 2018. gada 6. jūnijā iesniegts aizstāvēšanai Rīgas Tehniskās universitātes Materiālzinātnes un lietišķās ķīmijas fakultātes Ķīmijas katedrā
M8. L. Rozenberga-Voska “Ar Eu2+ un Dy3+ dopētu stroncija aluminātu nanodaļiņu sintēzes metožu izstrāde un to īpašības.”, Rīga, 2015.
M9. A. Krūmiņa “Eu jonu saturošu luminiscento pārklājumu iegūšana ar plazmas elektoroķīmisko oksidācijas metodi”, LU, 2015
M10. M. Vanks “Jonizējošā starojuma radītās optiskās absorbcijas izmaiņas PLZT keramikā”, LU, 2015.
M11. A. Zolotarjovs. “Ar plazmas elektrolītiskās oksidēšanas metodi iegūto modificēto alumīnija oksīdu pārklājumu luminiscences īpašību izpēte” LU 2016.
M12. P. Lesničenoks “Mezoporainu lielas virsmas materiālu izmantošanas iespēju pētījumi ūdeņraža uzglabāšanas pielietojumam autoindustrijā”, RTU, 2015
M13. I. Grauduma “Nanostrukturēta titāna dioksīda izmantošana oglekļa dioksīda reducēšanai”, LU, 2017
M14. A. Česnokovs, “TiO2 nanocauruļu fotokatalītiskās aktivitātes kvantu ķīmijas pētījums”, LU, 2015
M15. O. Lisovski, “DFT modeling of S and N co-doped anatase (101) TiO2 nanotubular photocatalysts for water splitting”, Uppsala University, 2015
M16. I. Jonāne, “Nanokristāliskā itrija oksīda lokālās struktūras pētījumi”, Maģistra darbs - aizstāvēts LU Fiz.-mat. fakultātē 2017, vadītājs A.Kuzmins.
M17. A. Cintiņš, “ODS tērauda izejmateriālu lokālās struktūras analīze izmantojot Ti un Y K-malas rentgenabsorbcijas spektroskopiju”, Maģistra darbs - aizstāvēts LU Fiz.-mat. fakultātē 2017, vadītājs A.Anspoks.
M18. A. Dorondo, Grafēna/metāla oksīda kompozītu kārtiņu elektroforētiska uzklāšana un fizikāli ķīmiskās īpašības, LU 2015
M19. K. Bikova, Elektroforētiska LiFePO4 kārtiņu iegūšana un fizikāli ķīmiskās īpašības, LU 2015
M20. M. Ķemere, „Luminiscences pētījumi ar diviem retzemju joniem aktivētos oksifluorīdu stiklos un stikla keramikās”, maģistra darbs, Rīga, LU, 2015,
M21. G. Priedītis, “Eiropija jonu luminiscence nātrija alumosilikāta-stroncija fluorīda stikla keramikās”, maģistra darbs, Rīga, LU, 2017
M22. A. Cvetkovs, ‘ZnxCd1-xO polikristālisko plāno kārtiņu iegūšana un īpašības”, maģistra darbs, Rīga, LU, 2015.
M23. G. Krieķe “Erbija jonu luminiscence oksifluorīdu stiklā un β-NaYF4 saturošā stikla keramikā”, RTU, 2015
M24. M. Osis, “Augšup-pārveidotā luminiscence ar erbija joniem aktivētā oksifluorīdu stiklā un stikla keramikā”, LU 2016
M25. E. Butanovs: “Pārejas metālu halkogenīdu 1D un 2D nanostruktūru sintēze un raksturošana”, LU 2016
M26. J. Žideļūns: “Metālu oksīdu un sulfīdu nanovadu heterostruktūras”, LU 2016
COMMERCIAL CONTRACTS:
L1. Applied Electronics Labs SIA – PEO samples analysis 9075 EUR
L2. GroGlass SIA – thin films hardness and morphology 20812 EUR
L3. Vidzemes Elektrotehnikas Fabrika SIA – microscopic and element analysis of filters 4598 EUR
L4. Zinātniskais Centrs “Mikroelektronika” SIA – laboratory research and consultations 50820 EUR
L5. GroGlass SIA – analysis of thin films samples 3747 EUR